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Vortical impulse theory is used to investigate the relationship between turbine thrust
and the near-wake velocity and vorticity fields. Three different hypotheses regarding
the near-wake structure allow the derivation of novel expressions for the thrust on a
steadily rotating wind turbine, and these are tested using stereoscopic particle-image
velocimetry (PIV) data acquired just behind a rotor in a water channel. When one assumes
that vortex lines and streamlines are aligned in a rotor-fixed frame of reference, one
obtains a PIV-based thrust estimate that fails even to capture the trend of the directly
measured thrust, and this failure is attributed to an implicit assumption that most of the
generated thrust does useful work. When one neglects the axial gradients of radial velocity,
the PIV-based thrust estimate captures the measured thrust trend, but underpredicts its
magnitude by approximately 33 %. The third and most promising physical proposition
treats the trailing vortices as purely ‘rolling’ structures that exhibit zero-strain rate in
their cores, with the corresponding thrust estimates in close agreement with direct thrust
measurements. This best-performing expression appears as a correction to the classical
thrust expression from momentum theory, possessing additional squared-velocity terms
that can account for the high-thrust regime of turbine operation that is typically addressed
empirically.

Key words: wakes

1. Introduction

For the purpose of rotor design or validation, it is useful to relate the forces on a rotor
to the fluid velocity near the blades. A control volume (CV) momentum analysis with
a downstream control surface (CS) in the near wake would be the most straight-forward
way to derive such a relationship. However, it is difficult to make convincing physical
arguments about the pressure field in the near wake, and axial momentum theory
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draws our attention to the far wake, where we can expect zero gauge pressure and no
further wake expansion. The velocities in that hypothetical far wake – which cannot be
observed in reality due to diffusion – are then related to the velocities at the rotor by
means of the Bernoulli equation, whose validity in a diffusive wake is questionable.
Despite misgivings about these simplifications, when this approach is incorporated into
blade-element momentum (BEM) codes, accurate predictions of peak power can be
obtained.

Momentum theory is limited, however, by its inability to account for thrust coefficients
in excess of unity, which do occur at off-design operating conditions. At present, this
so-called high-thrust regime must be modelled empirically, e.g. Buhl (2005). The present
work is a step towards a more theoretical explanation of this operating regime, avoiding
the conventional assumptions about the far wake and its relationship to the near wake.

Under the assumption of two-dimensional flow, the high-thrust regime has been recently
addressed. Steiros & Hultmark (2018) derived an expression for the drag on a nominally
two-dimensional porous rectangular plate, which serves as a physical manifestation of the
actuator disk concept used in wind turbine theory. Their tidy drag equation, expressed as
a function of plate porosity (where porosity is inversely correlated with axial induction),
agrees very well with experimental drag measurements, even at low porosity.

The present work seeks thrust expressions of yet greater generality, treating the complete
three-dimensional flow field behind a real rotor with a finite number of blades. The cost
of seeking such generality is that we will not arrive at a wholly predictive model like that
of Steiros & Hultmark (2018), but instead we will obtain candidate relationships between
rotor drag and a known near-wake velocity field and its derivatives.

This approach is made possible by vortical impulse theory, or merely ‘impulse theory’,
which is an alternative to axial momentum theory in which the equations of linear
momentum conservation are recast to remove pressure and introduce vorticity, e.g. Noca
(1997) and Wu, Ma & Zhou (2015). Limacher & Wood (2021) employed impulse theory to
derive general expressions for the thrust on a steadily rotating turbine, with no assumptions
about the far wake whatsoever. One of their key results serves as the starting point for the
present analysis.

Physical arguments then lead to three simplifying assumptions about the structure
of the near wake which yield thrust equations that are of both theoretical interest and
possible practical utility. These expressions are then validated against experimental data
obtained in the near wake of a rotating turbine in a water channel, using stereoscopic
particle-image velocimetry (stereo-PIV) to characterize the three-dimensional velocity
field on a stream-normal plane. Using these data, acquired for a range of tip speed ratios,
we calculate thrust using the impulse-derived expressions, and compare these estimates
with direct thrust measurements.

The use of PIV for force estimation remains an active area of research, e.g. Kurtulus,
Scarano & David (2007), Mohebbian & Rival (2012), Gharali & Johnson (2014), McClure
& Yarusevych (2019), Limacher, Morton & Wood (2019) and Limacher et al. (2020).
Instantaneous load estimation using impulse-based force expressions are particularly
sensitive to temporal resolution (Limacher et al. 2020), but this will not affect the present
study, which is concerned only with mean thrust estimates. Spatial resolution issues are
generally a lesser concern (Limacher et al. 2020), but we will also show that the acquired
resolution is sufficient.

Some near-wake rotor studies using PIV have employed a transverse (bisecting)
interrogation plane, and have focused on tip vortex evolution and near-wake expansion,
e.g. Whale et al. (1996), Massouh & Dobrev (2007), Yang, Sarkar & Hu (2011) and Lust,
Flack & Luznik (2018). Others have performed PIV on stream-normal planes, such as the
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investigation of yawed turbines in a turbulent boundary layer by Bastankhah & Porté-Agel
(2016), who considered planes as close as two diameters downstream. Velocity data on
a near-wake plane have also been acquired by means of hot-wire anemometry, e.g. Ebert
& Wood (1997) and Massouh & Dobrev (2007). However, none of these previous works
made a systematic attempt to relate measured near-wake velocities to rotor thrust.

The rest of the paper is split into theoretical and experimental parts. In § 2 classical
momentum theory is briefly reviewed, novel thrust expressions are derived from impulse
theory and the differing results are discussed. In § 3, the key equations derived in § 2
are adapted for application to experimental data. In § 4, the experimental methodology is
presented, and § 5 then presents the experimental results. A discussion is offered in § 6,
and finally our conclusions are given in § 7.

2. Theory

In the equations to follow, all velocities will be normalized by the free-stream velocity,
U∞; all distances by the rotor radius, R; all vorticity components by the ratio U∞/R;
and pressure by the free-stream dynamic pressure, 1/2ρU2∞, where ρ is fluid density. A
cylindrical coordinate system will be used with r denoting radial position, θ the azimuthal
angle and z the axial position. The three corresponding velocity components are ur, uθ and
uz. The origin lies on the rotor axis an infinitesimal distance behind the swept rotor plane.
Following convention, we will express the axial velocity on this plane as uz(r, θ, 0) =
1 − a(r, θ), where a is the axial induction factor. Only the azimuthal and axial components
of vorticity, ωθ and ωz, will be of concern in the present work.

Although a downstream-directed force on any body is most often referred to as drag,
we will herein refer to it as ‘thrust’ in keeping with the convention in the wind turbine
literature. Rotor thrust, T , will be reported as a conventional thrust coefficient,

CT = T
1
2ρπR2U2∞

. (2.1)

2.1. Brief review of classical momentum theory
Consider a cylindrical CV encompassing a turbine rotor, V1, as depicted in figure 1, with
one planar face well upstream of the rotor in the undisturbed free stream, and one face
just downstream of the rotor, SD, where z = 0. The rotor’s axis of rotation is colinear
with the central axis of the CV, whose radius RCV → ∞, allowing us to assume that the
axial velocity on the curved lateral boundary is equal to U∞. Assuming the flow to be
incompressible and the flow inside the CV to be steady in a rotor-fixed frame of reference,
conservation of mass and momentum in the CV leads to

CT = 1
π

∫
SD

(2a(1 − a) − p) dS, (2.2)

where p is the normalized gauge pressure.
Typically, this CV definition is not used in axial momentum theory, e.g. Sørensen (2016),

as there is no obvious and direct way to infer the behaviour of the pressure field on SD.
Instead, the flow is assumed to be circumferentially uniform, i.e. a = a(r), and the mean
streamtube passing through the rotor and extending from the free stream to the far wake is
considered (V2 in figure 1). This streamtube is assumed to be of circular cross-section for
all z. It is then assumed that the gauge pressure and radial velocity are zero in the far wake,
and that the Bernoulli equation holds on mean streamlines between the near and far wakes.
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SD Far wake
Blades

Hub R = 1

RCV > > R
V1

V2

r
z

U∞

Figure 1. Control volumes to be referenced in the present work. Here, V1 is a cylindrical CV of large radius,
with its downstream face just behind the blades; SD is the circular downstream face of the bounding control
surface of V1; V2 is a mean streamtube passing through the rotor, extending from the free stream to the far wake
where wake expansion is presumed to have ceased.

Annular streamtubes – subsets of V2 – are all assumed to expand uniformly, allowing us
to infer that the axial induction in the far wake is twice that at the rotor; that is, the axial
velocity in the far wake (at axial location z = zw) is taken to be uz(rw, θ, zw) = 1 − 2a(r),
where the locations (rw, θ, zw) and (r, θ, 0) are connected by a mean streamsurface. These
various assumptions allow the removal of pressure from (2.2) and lead to the following
classical result:

CT = 1
π

∫
Srot

4a(1 − a) dS

= 1
π

∫ 2π

0

∫ 1

0
4a(1 − a)r dr dθ, (2.3)

where Srot is the swept plane of the rotor, located at z = 0− in the chosen coordinate
system.

The integrand on the right-hand side of (2.3) is maximized when a = 0.5, and when
a = 0.5 everywhere on Srot we obtain CT = 1. As a result, momentum theory cannot
account for well-established observations of CT > 1, and this high-thrust regime must be
modelled empirically in BEM codes, e.g. Buhl (2005). Although there are second-order
modifications to momentum theory to reduce its limitations (for example, one could
account for azimuthal velocities in the wake to arrive at what Bontempo & Manna
(2017) call ‘generalized momentum theory’, replacing the far-wake zero gauge pressure
assumption), the fundamental theoretical issue of high thrust remains unresolved. We are
thus motivated to venture an entirely different approach.

2.2. Exact thrust expressions from vortical impulse theory
By applying vortical impulse theory to the CV V1 in figure 1, Limacher & Wood
(2021) derived the following expression for the thrust on a steadily rotating turbine in
an unbounded, incompressible and steady free-stream flow (neglecting viscous terms on
SD):

CT = 1
π

∫
SD

{u2
θ + u2

r − a2 − r(1 − a)ωθ + ruθωz}dS, (2.4)
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where the two components of vorticity are defined as

ωz = 1
r

∂

∂r
(ruθ ) − 1

r
∂ur

∂θ
, (2.5)

ωθ = ∂ur

∂z
− ∂uz

∂r
. (2.6)

The only additional assumption inherent to the derivation of (2.4) is that the flow field
within V1 appears steady in a frame of reference rotating with the blades. It is worth
emphasizing that the underlying impulse theory is an exact expression of the conservation
of linear momentum, and thus the stated assumptions are rather minor restrictions on the
generality of (2.4). For example, no assumption of circumferential uniformity has been
made, nor has any circumferential averaging of parameters been implied, in direct contrast
to conventional momentum-based analyses. Rather, all parameters in (2.4) through (2.6)
are free to vary on SD as functions of r and θ , i.e. on SD we have uθ = uθ (r, θ, 0), ur =
ur(r, θ, 0), etc.

Although the generality of (2.4) is a virtue of the present approach, we are interested in
making simplifications to reveal the conditions under which more well-known expressions
from wind turbine theory can be recovered. A key outcome of Limacher & Wood (2021)
was to present a sufficient set of conditions under which (2.4) collapses to the thrust
expression inherent to blade-element theory, wherein the total blade force is taken to be the
spanwise integral of the sectional Kutta–Joukowsky force. One of those conditions is that
the trailing vorticity be aligned with streamlines on SD in the frame of reference rotating
with the blades, which may be expected when the flow over the blades remains attached at
high Reynolds numbers. This will be the first physical proposition to be considered.

This proposition also happens to solve a practical measurement problem. Using
stereo-PIV, all three velocity components on SD will be available, but axial velocity
gradients will not, and thus the ωθ -term in (2.4) cannot be resolved. However, when vortex
lines and streamlines (in the rotating frame) are aligned on SD, we have

uθ − λr
1 − a

= ωθ

ωz
, (2.7)

where λ = ΩR/U∞ is the tip speed ratio, and Ω is the dimensional rotation rate of the
rotor. This relation allows ωθ to be removed from (2.4), yielding

CT = 1
π

∫
SD

{u2
r + u2

θ − a2 + λr2ωz}dS, (2.8)

which can be evaluated using stereo-PIV data on SD. The validity of this thrust expression,
specifically in the high-thrust regime of turbine operation, will be considered in the
experimental portion of this work.

As a second proposition, we may simply neglect the ∂ur/∂z-contribution to the ωθ -term
in (2.4). Setting ∂ur/∂z = 0 on SD yields

CT = 1
π

∫
SD

{
u2
θ + u2

r − a2 − r(1 − a)
∂a
∂r

+ ruθωz

}
dS, (2.9)

where ∂a/∂r = −∂uz/∂r has been substituted. This assumption is plausible at first glance,
because one might expect the expansion rate of the mean streamtube passing through the
rotor to be maximal at the rotor plane. That is, as Sørensen (2016) explains, the rate of
streamtube expansion increases as one approaches the rotor from upstream, and decreases
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as one moves downstream from the rotor towards the non-expanding far wake. However,
even for the idealized case of an actuator disk, Sørensen (2016) shows that ∂ur/∂z takes
on significant values in the rotor tip region. Whether this has a noteworthy effect on the
associated force contribution is a matter for experimental validation.

Since classical thrust expressions do not involve velocity derivatives, we are motivated
to manipulate the remaining derivative in (2.9) to remove explicit dependence on ∂a/∂r,
which is achieved by integration by parts. We express the area integral over SD as a double
integral over r and θ , substituting dS = r dr dθ . For the unbounded case, we take the limits
on the r-integral to be 0 to ∞ and the ∂a/∂r-term becomes

−
∫ 2π

0

∫ ∞

0
r2(1 − a)

∂a
∂r

dr dθ =
∫ 2π

0

{
r2a

(a
2

− 1
)∣∣∣∞

0

+
∫ ∞

0

(
2a(1 − a) + a2

)
r dr

}
dθ. (2.10)

The first term inside the θ -integral on the right-hand side vanishes, since a decays rapidly
with radius from the edge of the rotor in an unbounded flow (faster than a ∝ r−2).
Substituting the remaining terms into (2.9), we obtain

CT = 1
π

∫
SD

{u2
θ + u2

r + 2a(1 − a) + ruθωz}dS. (2.11)

This result is of clear theoretical interest, as the appearance of the 2a(1 − a) term prompts
us to ask: Under what conditions will (2.11) reduce to conventional results of momentum
theory?

To start, we may note that the ωz-term vanishes in the special case of circumferential
uniformity (i.e. ∂/∂θ ≡ 0), which is typically assumed in momentum theory. This is shown
as follows: ∫

SD

ruθωz dS = 2π

∫ ∞

0
ruθ

∂

∂r
(ruθ ) dr = πr2u2

θ

∣∣∣∞
0

= 0. (2.12)

One obtains the third expression from the second by integration by parts, and the whole
expression vanishes because the circulation around any contour outside the wake must
be zero. When the flow is not circumferentially uniform, this term cannot be so easily
dismissed. In the experiment to be presented, however, it will be evaluated and will be
shown to be negligible for the cases considered.

Although the validity of neglecting ∂ur/∂z on SD is yet to be tested, it is less
dubious further downstream. Note that (2.9) and (2.11) are both instantiations of our
second physical proposition that ∂ur/∂z = 0 on the downstream CS, but nothing in their
derivation requires the CS to be directly behind the rotor. If we move it to the far wake and
call this new surface SW , we can invoke the typical assumption in momentum theory that
ur ≡ 0 on SW , from which ∂ur/∂z ≡ 0 follows. We then obtain

CT = 1
π

∫
SW

{u2
θ + 2uz(1 − uz)}dS, (2.13)

which is identical to what one finds through a conventional momentum balance. The
second term is the momentum flux from the large cylindrical CV with SW as its
downstream CS, and the first term is equivalent to the pressure contribution on SW when
wake swirl is considered (McCutchen 1985; Wood 2007).

Our success in recovering a result of a classical momentum balance, expressed in terms
of far-wake velocities, corroborates the approach taken thus far. However, we must return
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our attention to the near wake, with the goal of expressing the thrust in terms of velocities
just downstream of the rotor. If we are to recover the familiar 4a(1 − a) integrand in (2.3)
under some circumstances, we might presume that the ∂ur/∂z-term contribution is, in fact,
significant, and that it is of similar magnitude to (and of the same sign as) the ∂a/∂r-term
in (2.9), from which the 2a(1 − a) term in (2.11) was extracted. This leads us to our third
proposition, to be presented in the next subsection.

2.3. A third physical proposition, its thrust expression and a comparison with classical
momentum theory

The thrust expressions thus far derived are exact, meaning that the expressions follow
directly from the conservation of linear momentum when the corresponding physical
propositions strictly hold (alignment of streamlines and vortex lines, or ∂ur/∂z → 0 on
SD). The following derivation, based on a third physical proposition, does not attain
to quite the same rigour as the first two, and some speculation must be introduced.
This third proposition nonetheless warrants consideration, because the resulting thrust
expression offers a possible explanation for the high-thrust regime, and it also results in
an experimentally based thrust estimate which more closely matches the measured thrust
than any other expression thus far presented.

Outside of the wake, we expect the flow to be irrotational, meaning ∂ur/∂z = −∂a/∂r.
We now hypothesize that within the wake the opposite is true, i.e. ∂ur/∂z = ∂a/∂r. This
corresponds to local strain rates of zero, suggesting that the trailing vortex cores are
purely ‘rolling’ structures that exhibit no shear. This zero-strain-rate hypothesis is our
third physical proposition about the near wake.

Since we are making opposite assertions over different regions of the flow, we must
express the transition between them. Let us define k(r, θ) as a smooth function such that

ωθ = ∂ur

∂z
+ ∂a

∂r
= k(r, θ)

∂a
∂r

, (2.14)

everywhere on SD, and k ∈ [0, 2]. Where k = 0, the flow is irrotational; where k = 2, the
flow is strain-rate free.

The ωθ -contribution in the general thrust equation (2.4) then becomes

CT,ωθ = − 1
π

∫ 2π

0

∫ ∞

0
r2(1 − a)ωθ dr dθ,

= − 1
π

∫ 2π

0

∫ ∞

0
r2(1 − a)k

∂a
∂r

dr dθ. (2.15)

Integrating by parts, the inner r-integral becomes

−
∫ ∞

0
r2(1 − a)ωθ dr = −r2a(1 − a)

∣∣∣∞
0

+
∫ ∞

0
2ra(1 − a) dr −

∫ ∞

0
r2ka

∂a
∂r

dr

+
∫ ∞

0
r2a(1 − a)

dk
dr

dr. (2.16)
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The second-last integral can be integrated by parts again, and after algebraic manipulation
we obtain

−
∫ ∞

0
r2(1 − a)ωθ dr = −r2ka

(
1 − a

2

)∣∣∣∞
0

+
∫ ∞

0
(2a(1 − a) + a2)rk dr

+
∫ ∞

0
r2a

(
1 − a

2

) dk
dr

dr. (2.17)

The first term on the right-hand side vanishes because the flow is irrotational at infinity;
that is, k = 0 as r → ∞.

Evaluation of the second and third integrals, however, would require precise knowledge
of how the flow transitions from the irrotational to strain-rate-free conditions. In absence
of such information, we lean on theoretical expectations to proceed. Our express intention
is to recover something which approaches the classical thrust expression in (2.3) for low
thrust, but which is capable of yielding thrust estimates in excess of one for highly loaded
rotors.

With that aim in mind, let us make the rather simplistic assumption that k = 2
everywhere within the wake, and k = 0 everywhere outside it. Defining the radius at the
outer edge of the tip vortices to be r = Re – with the expectation that Re � 1 – we set
k = 2 when r < Re, and k = 0 when r > Re, and assume that k varies smoothly between
R−

e and R+
e . The second integral in (2.17) then reduces to

∫ ∞

0
(2a(1 − a) + a2)rk dr =

∫ Re

0
(4a(1 − a) + 2a2)r dr, (2.18)

recovering the familiar 4a(1 − a) term from classical analyses.
The limits on the last integral in (2.17) can changed to be from r = R−

e to r = R+
e ,

because dk/dr = 0 has been assumed everywhere else. Taking a to be constant on R−
e �

r � R+
e (i.e. —∂a/∂r| � |dk/dr| at r = Re), a(1 − a/2) can be moved out of the integral,

which then reduces to

∫ R+
e

R−
e

r2a
(

1 − a
2

) dk
dr

dr = R2
eae

(
1 − ae

2

) ∫ R+
e

R−
e

dk
dr

dr = −2R2
eae

(
1 − ae

2

)
, (2.19)

where ae = a(Re, θ). Combining the preceding five equations, we obtain

CT,ωθ = 1
π

∫ 2π

0

{∫ Re

0
(4a(1 − a) + 2a2)kr dr − 2R2

eae

(
1 − ae

2

)}
dθ. (2.20)

It is usually assumed that a = 0 for r > 1 in classical treatments, and, to proceed, we
may assume that ae = 0, causing the second term on the right-hand side of (2.20) to
vanish. Realistically, the obstruction of the rotor causes some acceleration of fluid beyond
the free-stream velocity around the periphery of the swept disk, but this gives a zero
crossing of a somewhere near the wake’s edge, once again making the assumption of
ae = 0 plausible.

Given the crudeness of the assumption that k abruptly changes from k = 2 to k = 0,
there is little to be gained in arguing about the precise location of Re so as to evaluate
ae = a(Re, θ). Rather, we will proceed by neglecting the second term in (2.20), satisfied
that the form of the resulting expression conforms to our theoretical expectations.
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When this is done, and the remaining terms on the right-hand side of (2.20) are
substituted for the ωθ -term in (2.4), we obtain

CT = 1
π

∫ 2π

0

∫ ∞

0
{u2

θ + u2
r − a2 + ruθωz}r dr dθ

+
∫ 2π

0

∫ Re

0
{4a(1 − a) + 2a2}r dr dθ. (2.21)

Having recovered the familiar 4a(1 − a) integrand, the squared velocity terms in (2.21)
appear as second-order corrections to the classical results of momentum theory, allowing
for a thrust coefficient that grows monotonically with increasing a and allowing CT > 1
for a > 0.5. This is perhaps made clearer if we approximate Re ≈ 1, and define Sd ⊂ SD
as the projection of the swept rotor plane on SD, defined by θ ∈ [0, 2π] and r ∈ [0, 1] at
z = 0. Under the assumption that a ≈ 0 for r > 1, we then obtain

CT = 1
π

∫
SD

{u2
θ + u2

r + a2 + ruθωz}dS + 1
π

∫
Sd

4a(1 − a) dS. (2.22)

The classical thrust expression in (2.3) is recovered if the first integral on the right-hand
side of (2.22) is neglected. (The integral over Sd in (2.22), located at z = 0, is expected to
closely approximate the integral over Srot in (2.3), located at z = 0−, as no discontinuity
in a is expected in the neighbourhood of z = 0.) If valid, (2.22) suggests that momentum
theory, and the BEM codes based on it, will underpredict thrust at typical operating values
of a. In fact, underprediction of experimentally measured thrust has been observed for
BEM codes across a wide range of tip speed ratios in Krogstad & Eriksen (2013).

The novel corrective terms in (2.22) may be interpreted as accounting for wake
expansion in a manner not captured by classical momentum theory. The contribution of u2

r
is obviously associated with expansion, but so is the a2-contribution, since the latter was
derived from a term involving ∂ur/∂z.

The various thrust equations derived here in § 2 stand as competing hypotheses. We
are unaware of any experiments that have specifically tested their inherent physical
assumptions, and neither will we attempt such direct validation in the experimental portion
of this work. Rather, we will employ the thrust expressions resulting from each physical
proposition, using stereo-PIV data to furnish thrust estimates therefrom, and we will
compare those estimates with direct thrust measurements. In this way, we will attempt
to corroborate, if not fully validate, at least one of the three physical propositions.

3. Thrust expressions to be applied to the experimental dataset

To summarize the theoretical development in the previous section, three different
propositions regarding the near-wake flow field were made. These propositions, and their
associated thrust expressions, are as follows:

(i) when we assume that mean streamlines and vortex lines in the near wake are aligned
in a frame of reference rotating with the blades, we obtain (2.8);

(ii) when assume that ∂ur/∂z ≈ 0 just behind the rotor, we obtain (2.9); and
(iii) when we assume that the trailing vortex cores are rolling structures that exhibit

zero-strain rates in their cores, we obtain (2.21).

In an experiment, the flow cannot be resolved out to r → ∞, and so the outer bound on
the r-integrals in the three noted equations must be some finite r = Ro. For the derivations
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in § 2 to strictly hold, we would strive for Ro 
 1 such that uz(Ro, θ, 0) = U∞. The effect
of uz(Ro, θ, 0) /= U∞, either due to insufficiently large Ro or due to blockage, is discussed
in § 6.2. In the present experiment, there is a limit on the inner radius as well, due to the
presence of a central hub. Moreover, the illumination necessary for PIV creates bright
near-body reflections that prevent acquisition of accurate velocity data in the vicinity of
the hub, so we define the inner radius Ri as the innermost location where velocity data can
be reliably acquired.

Firstly, a thrust estimate from the classical expression in (2.3) will be acquired according
to

CT,0 = 1
π

∫ 2π

0

∫ 1

Ri

4a(1 − a)r dr dθ. (3.1)

Our first impulse-based thrust expression for experimental validation, associated with
proposition (i), is

CT,1 = 1
π

∫ 2π

0

∫ Ro

Ri

{u2
r + u2

θ − a2 + λr2ωz}r dr dθ. (3.2)

Proposition (ii) leads to

CT,2 = 1
π

∫ 2π

0

∫ Ro

Ri

{
u2
θ + u2

r − a2 − r(1 − a)
∂a
∂r

+ ruθωz

}
r dr dθ. (3.3)

Recall also that this expression was integrated by parts to remove the velocity derivative
and arrive at (2.11). For the finite-domain case where we cannot assume a = 0 at r = Ro,
the first θ -integral on the right-hand side of (2.10) must not be omitted, and we have a
modified version of (2.11)

CT,2a = 1
π

∫ 2π

0

∫ Ro

Ri

{u2
θ + u2

r + 2a(1 − a) + ruθωz}r dr dθ

+ 1
π

∫ 2π

0

{
r2a

(a
2

− 1
)∣∣∣Ro

Ri

}
dθ, (3.4)

where CT,2 and CT,2a incorporate the same physical assumptions, such that when applied
to experimental data, they should differ only due to numerical errors in the evaluation of
the derivative ∂a/∂r. These two expressions will be compared as a check on the sufficiency
of the spatial resolution of the acquired velocity field.

Proposition (iii) requires us to make an assumption about where the flow transitions from
being strain-rate free to irrotational, and we denoted the radial location of this transition
as Re. The best theoretical agreement with classical momentum theory is obtained when
we assume that Re = 1, which yields

CT,3 = 1
π

∫ 2π

0

∫ Ro

Ri

{u2
θ + u2

r − a2 + ruθωz}r dr dθ

+ 1
π

∫ 2π

0

∫ 1

Ri

{4a(1 − a) + 2a2}r dr dθ. (3.5)

In the experimental data to be presented below, collected at a small distance downstream
of the rotor, the tip vortices can be observed to extend beyond r = 1, and Re = 1 might be
called into question. To show that this choice has a small effect on the thrust estimates, we
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Front view Photograph

Side view, cutawaysTop view

Mirror

Camera 1

Sheet

optics

Camera 2

Camera 2 Camera 1

Force transducer

Gearmotor

Internal shaft

Mitre gears

Laser

sheet

NACA0021 profile

FoV

ØD
2.13D

3.78D

3.15D

60°

2.76D 0.52D
0.09D

0.23D

2 mm

D = Ø12.7 cm

Laser  sheet

Mirror

Camera

Laser

U∞ = 0.19 m s–1

(Sketches not to scale)

(a) (b)

(c) (d )

Figure 2. Experimental set-up; (a) front-view sketch, showing the FoV for stereo-PIV data capture; (b)
photograph of the set-up, showing the laser sheet intersecting the transparent hub just behind the blades; (c)
top-view sketch, showing arrangement of mirrors and cameras, and the 60◦ angle between the cameras’ optical
axes; (d) side view with cutaways, showing internal shafts driving the rotor, and showing the mounting of the
gearmotor and force transducer above the waterline. Sketches are not to scale.

define an alternative expression in which we set Re = Ro, at the outer edge of the domain
to be observed. Changing the upper limit on the second r-integral in (3.5) from r = 1 to
r = Ro, the two integrals can be combined to yield

CT,3a = 1
π

∫ 2π

0

∫ Ro

Ri

{u2
θ + u2

r + a2 + ruθωz + 4a(1 − a)}r dr dθ. (3.6)

4. Methodology

4.1. Experimental apparatus
A stereo-PIV investigation on a stream-normal plane just behind a turbine rotor was
undertaken in a water channel facility at Princeton University. Figure 2 shows top-, front-
and side-view sketches and a photograph of the experimental set-up. The illuminated plane
was 0.09D behind the trailing edge of the turbine blades, where D = 127 mm is the turbine
diameter. This was judged to be as close as practically possible without encountering
severe reflections from the blades in the acquired images.

The sampled field of view (FoV) is below the axis of the rotor where both cameras have
optical access, as shown in figure 2. Individual sectors of the velocity field are measured
sequentially, and a complete 360◦ velocity field is reconstructed using the stitching method
described in § 4.5.
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Figure 3. (a) Chord and twist distributions – c/R and θ , respectively – of the rotor blades; (b) standard Eppler
E387 airfoil cross-section (black markers) and the modified E387 airfoil with a trailing edge of finite thickness
(red markers), truncated for ease of manufacture by 3-D printing.

A Litron NANO L50-50PIV dual-pulse laser was used for illumination, with the beam
manipulated into a 2 mm-thick sheet using standard sheet optics. Two LaVision sCMOS
CLHS cameras were mounted about 2.76D downstream of the illuminated plane, oriented
with their viewing axes normal to the acrylic channel walls to prevent optical distortion.
The viewing axes were redirected upstream using 76 mm square mirrors mounted inside
the channel, achieving a 60◦ angle between the two views. Image capture and laser
firing were synchronized using a LaVision PTU X programmable timing unit. Particle
image-pair acquisition was triggered once per rotation based on the motor encoder signal
using a programmable OSOYOO Due R3 microcontroller. The flow was seeded with
silver-coated hollow glass spheres of mean diameter 14 μm (Potters Industries, S5000-S3).

The rotor was driven by a gearmotor with a 3.7 : 1 gear ratio (Phidgets 3265_0) mounted
above the waterline using shafts internal to the supporting apparatus. This apparatus
consisted of a cylindrical fuselage (0.23D in diameter) with an elliptical aft body, and a
vertical sting with an airfoil cross-section (NACA0024 near the fuselage, transitioning to a
NACA0021 profile above) whose chord length was 60 mm, or 0.47D. Both the fuselage and
the sting, as well as auxiliary mounting components above the waterline, were fabricated
using the fusion deposition modelling (FDM) method of three-dimensional (3-D) printing.

The investigated turbine rotor is modelled after that of McTavish, Feszty & Nitzsche
(2014), which they designed specifically for the low-Reynolds-number environment of a
water channel. In the present study, the rotor hub diameter has been increased from their
value of 0.1D to 0.23D to accommodate the internal components needed to drive the rotor.
The chord and twist distributions of the blades are shown in figure 3(a).

The rotor was fabricated using the stereolithography apparatus method of 3-D printing to
achieve a smoother surface finish than is possible using FDM. The three blades and the hub
were printed separately and then friction-fit together. A polymer known by the tradename
WaterShed 11122XC was chosen for its translucence to minimize reflections at the surface
that may saturate particle images and prevent the acquisition of adequate particle-image
correlations near the hub and blades. A modified Eppler E387 airfoil cross-section was
used for the blades, where the trailing edge has been truncated to have sufficient thickness
for 3-D printing. The modified airfoil cross-section is shown in figure 3(b) alongside the
standard Eppler E387 airfoil, as obtained from the online airfoil database maintained by
the Applied Aerodynamics Group at University of Illinois at Urbana-Champaign (UIUC).
(https://m-selig.ae.illinois.edu/ads/coord_database.html.)
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Ωtarget
Ωosc

Ωtarget

Ωd

Ωtarget

125 r.p.m. 0.206 0.028
150 r.p.m. 0.137 0.022
175 r.p.m. 0.108 0.017
200 r.p.m. 0.088 0.011
225 r.p.m. 0.070 0.014
250 r.p.m. 0.064 0.018
275 r.p.m. 0.054 0.021
300 r.p.m. 0.050 0.011

Table 1. Characterization of the motor-speed variability. Here, Ωosc represents the amplitude of the oscillatory
component at the frequency of rotation; Ωd represents the instantaneous uncertainty associated with the
non-stationary slow drift of the mean motor speed.

The entire rotor, fuselage and sting assembly was mounted to a six-axis force transducer
(ATI Mini40) above the waterline, which itself was rigidly mounted to the water channel
frame.

4.2. Motor control
In the present work, tip speed ratios of λ = {4.37, 5.25, 6.12, 7.00, 7.87, 8.75, 9.62, 10.50}
were investigated. The free-steam velocity was held fixed at U∞ = 0.19 m s−1 for all tip
speed ratios and the rotor speed was set to Ω = {125, 150, 175, 200, 225, 250, 275, 300}
r.p.m.

The gearmotor speed was controlled using closed-loop feedback of an encoder signal
(Anaheim Automation ENC-A4TS-0360-197-H-M). Extant motor speed variations can be
characterized as the superposition of an oscillation at the rotor frequency, possibly caused
by uneven friction in the drivetrain, and a non-stationary slow drift. This superposition can
be expressed as

Ω = Ωtarget + Ωosc sin(2πfrott) ± Ωd, (4.1)

where Ωtarget is the target speed, Ωosc is the oscillating component at the frequency of
rotation, and Ωd is treated as a random error due to the slow drift.

Examples of the r.p.m. signals acquired by numerical differentiation of the encoder
signal (using the method of central differences) are shown as red lines in figure 4(a) and
4(b). Applying a modified-Gaussian low-pass filter, as defined in Limacher et al. (2019),
with passband and stopband frequencies of 0.2frot and 0.3frot, we obtain estimates of the
slow drift, shown as blue lines on the same figure.

Calculating the standard deviation of the r.p.m. signal over ten rotor cycles, σ10cyc, we
estimate the oscillatory amplitude as Ωosc = √

2σ10cyc, and the instantaneous uncertainty
associated with the long-term drift is characterized as twice the standard deviation of the
low-pass filtered signal over a 20 s sample. Values of Ωosc and Ωd are reported in table 1.

4.3. Direct force measurements
The measured rotor thrusts were small, amounting to approximately 0.2N for a thrust
coefficient of CT = 1. This is at the low end of the 0N to 20N measurement range of
the ATI Mini40 force transducer, and it was deemed necessary to perform an in-house
calibration over the range from 0N to 0.4N. In addition, to obtain repeatable results,
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Figure 4. Examples of the motor-speed signal, acquired by numerical differentiation of the raw encoder signal.
The red lines are the raw signals, the dashed black lines are the target r.p.m., and the blue lines are the
low-pass filtered signal highlighting the non-stationary long-term drift: (a) 150 r.p.m. target; (b) 300 r.p.m.
target.

it was found necessary to apply a constant pre-load in the downstream direction of
a few Newtons using an elastic band. Unrepeatable results in absence of this preload
were attributed to static friction internal to the transducer. Over this range of forces,
linear regression revealed a linearity error of about 0.6 %, and a zero-offset error of
0.0008N. This value is less than the measurement resolution of 0.005N, indicating that
the zero offset is effectively zero. After normalization, the thrust coefficient resolution
is 0.022.

Another challenge to the use of the Mini40 transducer is the non-stationary drift in the
signal over long times. Leaving the unloaded transducer over 30 minutes, this drift could
be as high as 0.05N, which is significant for our purposes. Only relative changes in thrust
over short times were deemed trustworthy. To address this challenge, we performed two
types of thrust test. In the first, which we call a ‘ramp-up test’, we started recording thrust
with the water channel and the rotor off; after 45 s, we ramped up the water channel speed
to 0.19 m s−1 and turned the rotor on at Ω = 250 r.p.m.; taking the mean thrust over at
least 25 s, and repeating this test four times, we established a repeatable reference thrust,
T250, for subsequent trials. To determine the thrust at all other rotor speeds, we began
trials with the channel on and the rotor at 250 r.p.m., then changed the rotor set point to
the new desired value and measured the change in mean thrust, �TΩ , allowing the thrust at
each speed to be calculated as TΩ = T250 + �TΩ . Due to this summation, the zero-order
uncertainty due to sensor resolution is increased by a factor of

√
2 (Moffat 1988), resulting

in an uncertainty contribution of δCT,a = 0.031 in the thrust coefficients. In the reported
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results, this uncertainty will be added to two standard deviations of individual thrust
measurements to yield a total uncertainty estimate.

Ten repeated trials for each rotor speed were conducted, five of which were conducted
after the rotor apparatus was disassembled and reassembled. The thrust on the fuselage and
sting were also characterized using five ramp-up tests with a bladeless rotor (a hub only),
and this thrust has been subtracted from all measured thrust values to give the measured
rotor thrust coefficients reported in § 5.

All force data were acquired at a sampling rate of 200 Hz.

4.4. The PIV methodology
For each sector, 200 image pairs were captured with both cameras, with an interframe
time of 2 ms. Mean velocity fields were calculated from particle-image pairs in LaVision’s
DaVis 10 software using the sum-of-correlations method (Meinhart, Wereley & Santiago
2000), wherein all 200 cross-correlation maps are averaged before the correlation
peak is identified and used to calculate velocity. This method reduces random error
in the calculated mean velocities by effectively weighting sharper correlation peaks
more strongly. By contrast, if each correlation map were used to calculate a particle
displacement and these displacements were averaged, a single erroneous vector from a
diffuse correlation peak could greatly skew the mean value.

By using 200 correlation maps (N = 200) to compute the mean velocity field, the
uncertainty in local mean velocity components is made acceptably low. If instantaneous
deviations from the true mean (whether physical or spurious) are normally distributed with
a standard deviation of σ , then repeated experiments would yield calculated means with a
standard deviation about the true mean of σ/

√
N (Moffat 1988) – in this case, 0.07σ – and

we may presume the error in our measured mean velocities to be of the order of 1 %. When
those velocity data are used as inputs to the thrust expressions given in § 3, the integration
operations reduce uncertainty in the thrust estimates even further and this source of error
can be neglected.

PIV calibration was performed using a 3-D calibration plate (LaVision 106-10), with
2.2 mm-diameter marks separated by 10 mm on each plane, and the two planes separated
by 2 mm. The calibration was refined using the planar self-calibration function in LaVision
DaVis 10 (Wieneke 2005), applied on over 900 particle-image pairs for the free-stream
flow with the experimental apparatus removed. The mean free-stream velocity of U∞ =
0.19 m s−1 was also obtained from this dataset.

To correct for variations in laser sheet brightness over the field of view, each image
underwent local brightness normalization over a 300 pixel region. The brightness of the
second image of each image pair was normalized to the brightness of the first to correct
for any difference in energy between the two laser pulses. A min/max filter over a length
of four pixels was also applied.

Multi-pass correlations were employed, performing one pass with a window size of
64 × 64 pixels and 50 % overlap, and a second pass with 32 × 32 pixels and 75 % overlap.
The resulting vectors are spaced in the x- and y-directions by 0.00655R.

In vector post-processing, vectors with a correlation value of less than 0.5 were removed.
Universal outlier detection (Westerweel & Scarano 2005) was also employed on 5 × 5
vector regions to remove spurious vectors. Vectors rejected in these ways were replaced by
interpolation. No additional smoothing was applied, as Limacher et al. (2020) found that
even modest spatial filtering can cause impulse-based force expressions to underestimate
drag.
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4.5. Velocity field processing
As shown in figure 2, only the lower portion of the rotor is visible to both cameras,
allowing a 36◦-sector with an outer radius of 1.2R to be captured at any given moment. To
reconstruct the complete 360◦ flow field, 15 of these sectors were captured, each separated
by 24◦ from its neighbours, yielding 12◦ of overlap on either side of each sector. In
the reconstruction, the velocity fields in the overlapping regions were taken as a linearly
varying weighted average of the two adjacent sectors.

For ease of plotting and thrust calculations, the PIV data, acquired on a Cartesian grid,
are linearly interpolated onto a circular grid, with equal radial and angular spacing of �r =
0.0039R and �θ = 0.0031 rad between data points. Using these stitched and interpolated
velocity fields, the equations presented in § 3 will be used to estimate thrust. In all of those
equations, the integrand takes the form rf (r, θ), and the integrals will be approximated
using a midpoint integration method

∫ 2π

0

∫ r2

r1

f (r, θ)r dr dθ ≈ �θ�r
∑

i

∑
j

fijrij. (4.2)

Although the turbine extracts energy from the flow for most of the investigated tip speed
ratios, its rotation is driven by a motor. This is made possible by the small magnitude
of power extracted, which is readily dissipated by the friction of the drivetrain, or by the
electrical resistance internal to the motor. To confirm that the system extracts positive
energy over at least some of the investigated tip speed ratio range, we will calculate
the power coefficient, CP, using the near-wake velocity data. Applying the conservation
of angular momentum to the volume V1, and calculating power as torque multiplied by
rotational speed, we obtain

CP = −2λ
π

∫ 2π

0

∫ RCV

Ri

(1 − a)uθ r2 dr dθ, (4.3)

which is numerically approximated using discrete data according to (4.2). The calculated
CP curve serves as a check on the reasonability of the velocity data, and we can verify that
the measured thrust curve is consistent with the power regime in which the rotor operates.

Where the laser sheet intersects the translucent rotor hub, the background brightness
in the images is significant. To avoid biased correlations that will introduce error into the
calculations of force and power, all data within r � Ri = 0.28R will be omitted.

5. Results

5.1. Velocity fields
Figures 5 and 6 show the three components of the acquired velocity fields for each of the
eight different tip speed ratios. Rotor rotation is counterclockwise in these plots. The axial
and azimuthal velocity plots show patterns consistent with the presence of three blades just
upstream of the investigated plane, featuring: accelerated axial flow ahead of the blades;
a notable velocity deficit aft of the blades; and pronounced azimuthal velocity directly
downstream of the blades. These observations are consistent with the expected sense of
the bound blade circulation. Extrema in the radial velocity magnitude occur around the
periphery of the swept disk, including both inward and outward velocity peaks. These
features are consistent with the formation of tip vortices, and their changing blade-relative
position with increasing tip speed ratio is consistent with decreasing helical vortex pitch.
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Figure 5. Three components of the velocity field in the near wake of the turbine for tip speed ratios of 4.37,
5.25, 6.12 and 7.00, arranged in rows from top to bottom. (a,d,g,j) Axial velocity fields; (b,e,h,k) azimuthal
velocity fields; (c, f,i,l) radial velocity fields. Blade rotation is counterclockwise, as are positive azimuthal
velocities. Positive radial velocities are directed outwards. The outline of the normal projection of the blades
onto the interrogated plane, and the circle traced by the tips at r = 1, are shown in black on each panel.

Other less expected features include an oscillatory pattern in the axial velocity field in
the region ahead of the blades. The persistence of this feature through the averaging of 200
PIV correlation maps suggests that it is repeatable, and may be attributed to mechanical
vibrations of the structural apparatus at an integer multiple of the rotational frequency.

In roughly the same regions, significant positive azimuthal velocity and outwards radial
velocity is also observed. The spatial arrangement of these features most clearly shows
the mild circumferential flow asymmetries in the mean fields that arise due to temporal
variability of the motor speed, as discussed above in § 4.2. These features cannot be
dismissed as measurement errors. They are clearly not random errors, as they persist
through phase averaging. They also cannot be due to optical distortions in, for example,
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Figure 6. Three components of the velocity field in the near wake of the turbine for tip speed ratios of 7.87,
8.75, 9.62 and 10.50, arranged in rows from top to bottom. (a,d,g,j) Axial velocity fields; (b,e,h,k) azimuthal
velocity fields; (c, f,i,l) radial velocity fields. Blade rotation is counterclockwise, as are positive azimuthal
velocities. Positive radial velocities are directed outwards. The outline of the normal projection of the blades
onto the interrogated plane, and the circle traced by the tips at r = 1, are shown in black on each panel.

the acrylic walls of the water channel, because they do not appear in every sampled sector
from which the stitched fields were reconstructed.

We will now demonstrate that these unexpected features do not affect our conclusions
regarding the validity of our three propositions. However, it is important to consider their
origin. In particular, the in-plane velocity features could be physically explained by the
presence of a streamwise vortex generated by the pump that drives the flow. When no
flow conditioning is applied, such a vortex is clearly observable spanning the length of the
water channel, but it is not readily apparent when a honeycomb and flow screens are placed
in the plenum upstream of the test section. If a less coherent vortex remains after flow
conditioning, it may have escaped detection in the free-stream flow characterization due
to a tendency to wander spatially. With a steadily operating rotor present, this hypothetical
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Figure 7. Contour plot of vorticity for λ = 7.87.

vortical feature may be driven to oscillate more regularly, generating artifacts that survive
phase averaging of the velocity field.

A sample contour plot of ωz at λ = 7, shown in figure 7, exhibits a speckled pattern in the
same region as the observed velocity artifacts. This pattern is reminiscent of characteristic
random noise in instantaneous PIV-acquired vorticity fields, but should not be attributed
to random error in this case because it is not consistent throughout the domain. Rather, this
pattern suggests relatively high local turbulence intensities around the observed anomalies,
consistent with the presence of an incoherent streamwise vortex. The regions of highest
vorticity magnitude are found near the periphery of the swept disk.

Assuming the anomalous flow features to be physical, it is necessary to consider their
effect on the thrust estimates to be presented in § 5.3. In § 5.4, the contributions of
individual terms in the thrust expressions are presented, and it is demonstrated that these
flow features do not affect the conclusions to be drawn.

5.2. Power coefficients
The power coefficient, calculated using (4.3), is plotted vs tip speed ratio in figure 8,
with peak performance occurring at the lowest investigated tip speed ratio of 4.37. The
maximum CP,max = 0.474 seems impressive for a turbine operating at a diameter-based
Reynolds number of Re = DU∞/ν = 1.23 × 104 (where ν is kinematic viscosity), but
recall that this rotor was designed specifically for small water channel environments
(McTavish et al. 2014). By interpolation, the natural runaway condition of this rotor (where
CP = 0) is at a tip speed ratio just above nine, and energy must be put into the flow to drive
the rotation at the two highest tip speed ratios under investigation.

5.3. Measured and calculated thrust coefficients
The measured and calculated thrust coefficients are plotted together in figure 9. The narrow
grey band around the mean measurements denotes an estimate of uncertainty, defined here
as twice the standard deviation of the individual measurements at each tip speed ratio, plus
the zero-order uncertainty associated with the force sensor resolution. The trend of gently
increasing CT , with a magnitude just above unity, is consistent with a turbine operating on

949 A24-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

72
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.722


E.J. Limacher and others

0.6

0.4

0.2

–0.2

–0.4

0

4 5 6 7 8 9 10 11

CP

λ

Figure 8. Power coefficient, CP, as calculated using (4.3), vs tip speed ratio, λ. The rotor reaches its runaway
condition at a tip speed ratio just above 9.0, above which energy must be put into the flow to drive the rotation.
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CT,0

CT,1

CT,2
CT,3
CT,3a

λ

Figure 9. Comparison of measured and calculated thrust using (3.1), (3.2), (3.3), (3.5) and (3.6), denoted as
CT,0, CT,1, CT,2, CT,3 and CT,3a, respectively, plotted vs tip speed ratio, λ. The estimates furnished by (3.4) –
denoted as CT,2a in the text – have not been shown here, because they differ from CT,2 by <0.1 % for all
λ. The thrust estimates labelled as ‘refined data’ (yellow-filled red stars) for λ = 7.87 were calculated from
reprocessed PIV data using 16 × 16 windows instead of 32 × 32. There is one refined-data marker for each
of the four thrust expressions CT,0 through CT,3; these markers overlap closely with the corresponding data
points in the thrust curves calculated with the original data, showing the minimal effect of improved spatial
resolution.

the so-called ‘backside’ of the curve, i.e. at tip speed ratios between the power optimum
and the runaway condition, e.g. Krogstad & Adaramola (2011).

The classical thrust expression from momentum theory underpredicts the mean
measured thrust curve by 25 % to 30 %, averaging 28 %. Such underprediction is expected
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for a turbine operating above its optimal tip speed ratio. Recall that, for any value of a,
it is impossible to attain CT > 1 from (3.1), and the rectification of this shortcoming of
momentum theory is an ultimate aim of this work.

The first impulse-based thrust estimate, CT,1, yields the poorest estimate of all those
presented. It drastically underpredicts the measured thrust magnitude, and fails even to
capture the thrust trend. The trend is, however, remarkably similar to the trend of CP vs λ
in figure 7. This observation might indicate that the derivation of CT,1 contains an implicit
assumption about the relationship between thrust and useful work, as discussed further in
§ 6.3.

CT,2 from (3.3) captures the measured thrust trend, but underpredicts its magnitude
by 31 % to 35 %, with an average of 33 % across tip speed ratios. Equation (3.3)
contains a term dependent on ∂a/∂r, and we must consider whether the observed thrust
underprediction is due to a failure to capture this gradient accurately. In (3.4), this
derivative term has been removed by integration by parts, and the resulting estimate –
denoted as CT,2a in (3.4) – differs from CT,2 by <0.1 % for all λ. This similarity suggests
that the data’s spatial resolution is sufficient to avoid numerical errors in the derivative
estimate. Since CT,2a would be indistinguishable from CT,2 on figure 9, the former has
been omitted for clarity.

One further check on the spatial resolution has been undertaken. The stereo-PIV data
were reprocessed using a final window size of 16 × 16 pixels instead of 32 × 32, again
with 75 % overlap, halving the spacing between neighbouring vectors. This was done for
only one tip peed ratio, λ = 7.87, and the results are plotted as yellow-filled red stars
in figure 9. There is one marker for each of the four thrust expressions, CT,0 through
CT,3, and these markers overlap closely with the corresponding data points in the thrust
curves calculated with the original data, again corroborating the sufficiency of the spatial
resolution.

The value of CT,3 shows good agreement with the measured thrust curve in figure 9,
differing from it by 5.7 % at worst. Given the approximations that were made, the observed
agreement cannot serve as an unequivocal validation of the inherent physical hypothesis,
but it certainly affirms the consideration of strain rates in trailing vortex cores as worthy
of further consideration. Also, CT,3a differs from CT,3 only in terms of where the abrupt
transition between the assumed strain-rate-free and irrotational conditions occurs: the
transition is taken to lie at r = Ro = 1.2 in CT,3a, and at r = 1 in CT,3. This choice has
only a small impact on the resulting force estimates, and CT,3a is also in good agreement
with the measured thrust coefficients across all λ.

5.4. Individual thrust contributions and error sensitivity
The individual contributions of each term in (3.2) and (3.3) are plotted in figure 10, to
help give a better understanding of the reasons for the observed discrepancies between
the measured thrust coefficients and CT,1 and CT,2. The squared velocity contributions
are common to both equations. Of these, only the −a2-contributions are of significant
magnitude, varying between −0.21 and −0.24, whereas the u2

r contributions have a mean
value of 0.068. The u2

θ -contribution is lesser still. Although it is not apparent due its small
magnitude, the u2

θ -contribution does decrease with increasing tip speed ratio as expected.
The ruθωz-contribution is also small, despite significant circumferential velocity

magnitudes directly behind the blades, as seen in figures 5 and 6. This is explained by the
relatively low vorticity magnitudes in the same areas, as shown for λ = 7.87 in figure 7.
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Figure 10. Components of (3.2) and (3.3). The integrands of each component, χ , are given in the legend, and
their integrated values over SD are plotted. The complete thrust estimates CT,1 and CT,2 are also plotted with
the same markers as in figure 9.

For λ = 7.87, figures 11(a) and 11(b) present the spatial distribution of contributions
to the vortical terms for CT1 and CT2 – λr3ωz and −r2a(∂a/∂r), respectively, where the
integrands given in the legend of figure 10 have been multiplied by r because dS = r dr dθ .
Both CT1 and CT2 are dominated by their vortical terms, which in turn are dominated by
contributions around the periphery of the swept disk. The ‘speckled’ regions ahead of the
blades in figure 11(a), which are observable for all λ, are amplifications of the speckled
pattern in the vorticity plot in figure 7. However, the contribution of the region within
r < 0.95 to CT,1 is always positive, so omitting the anomalous features would only worsen
the thrust estimates. Figure 11(b) shows that the vortical component of CT,2 is not as
sensitive as CT,1 to the anomalous flow features ahead of the blades, and the magnitude of
the contribution within r < 0.95 is < 0.1 for all λ. Thus, we conclude that anomalous flow
features in figures 5, 6, and 7 are not to blame for the discrepancies between measured and
calculated thrusts.

The dominance of the vortical term’s contribution to CT,1 raises the issue of error
sensitivity. The derivation of CT,1 attempts to capture the dynamic effect of both ωθ and
ωz in one expression dependent on the latter, but at these tip speed ratios – if vortex lines
and streamlines are really coincident – the helical pitch of the wake would be short, and
ωθ would be the greater component of vorticity. Thus, by using (3.2), we are attempting to
estimate a large quantity by multiplying (by a large factor) a smaller quantity that is prone
to high uncertainties when acquired using PIV. Although this is plausible, we discuss in
§ 6.3 why a physical explanation remains more likely.

We likewise conclude that the inaccuracy of CT,2 is due to the inadequacy of the physical
assumption that underlies it, since we have already demonstrated that the spatial resolution
was sufficient to avoid errors in the numerical evaluation of the derivative ∂a/∂r.

Indeed, we must note that the physical assumptions inherent to CT,2 and CT,3 are
mutually exclusive – either the ∂ur/∂z-term is negligible, or it is not. The fact that CT,3
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Figure 11. Contours of vortical contributions to force for a tip speed ratio of λ = 7.87: (a) vortical
contribution to CT,1 in (3.2); and (b) vortical contribution to CT,2 in (3.3).

performs so well suggests that it is not, in fact negligible. This failure was foreshadowed,
if not outright predicted, from the manipulation of CT,2 that led to the expression for
CT,2a in (3.4). The appearance of the 2a(1 − a) integrand in that equation hinted that the
neglect of the ∂ur/∂z-term might leave us incapable of recovering the classical 4a(1 − a)

integrand under typical operating conditions – conditions for which classical expressions
have furnished adequate predictions for engineering purposes, even if underpredictions of
the order of 10 % are commonplace (Krogstad & Eriksen 2013).

To strengthen the claim that both CT,1 and CT,2 fail for physical reasons, two sources
of error must be addressed. In §§ 6.1 and 6.2, we argue that nonlinearities in the thrust
expressions and blockage effects are sufficiently small that they do not affect the general
trends in the thrust estimates, nor the conclusions to be drawn.

6. Discussion

6.1. Nonlinear contributions to thrust
The PIV investigation has yielded mean velocity components on the near-wake plane, SD,
and these mean quantities have been used in the estimation of thrust using the equations
in § 3. Since these equations contain products and squares of the velocity components and
their gradients, there is a possibility for nonlinear contributions akin to Reynolds stresses.

The most likely contributor to time variations in the velocity components is the
variability in the motor speed. However, we expect this effect to be small by
order-of-magnitude arguments. Let us express each parameter instantaneously as m(t) =
M + m′(t), where m is the parameter of interest, M is its mean value and m′ is its zero-mean
varying component. Taking the long-time mean of m2 over N rotor cycles, we obtain

m2 = 1
Nτ

∫ Nτ

0
m(t)2 dt = M2 + 1

Nτ

∫ Nτ

0
m′(t)2 dt = M2 + m′2, (6.1)

where the overline denotes long-time averaging. Here, τ is the period of rotation, and N is
the number of cycles over which averaging is performed, taken to be large.

Assuming that m′/M is of similar order to the rotor-speed oscillation amplitude,
Ωosc/Ωtarget (see table 1), the associated nonlinear contributions of the squared terms will
be of order O(Ω2

osc/Ω
2
target), which is less than 5 % even for the worst case at 125 r.p.m., or

λ = 4.37. Terms containing a product of two parameters will yield nonlinear contributions
of equal or lesser relative magnitude, being maximized in the special case of perfect
correlation between the two parameters’ variations. This level of error is acceptable for
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our present purposes, and is not sufficiently large to explain the discrepancies between the
measured and calculated thrusts reported in § 5.

Nonlinearities due to turbulence may be even less significant, with a free-stream
turbulence level of <2.5 % over the sampled FoV. However, it must be acknowledged that
local turbulent fluctuations behind the rotor could, in fact, be more significant than those
observed in the unobstructed free stream. To minimize the amplification of perturbations,
SD was placed as close as practically possible to the rotor, minimizing the distance over
which convective instabilities can grow. Unfortunately, a direct evaluation of nonlinear
contributions is not feasible. Instantaneous velocity fields acquired by PIV tend to be
noisy – sufficiently noisy that one cannot distinguish physical and non-physical
fluctuations. In future studies, perhaps using a smaller FoV or a different velocimetry
technique, the significance of local fluctuations, and their concomitant thrust
contributions, would be worthy of investigation.

6.2. The effect of blockage on the impulse-based thrust estimates
Equation (2.4) was derived in Limacher & Wood (2021) under the assumption that the
axial velocity on the curved lateral boundary of V1 is equal to the free stream. This
assumption will become invalid if blockage is significant, or if the radius of the CV is not
sufficiently large. Revisiting the derivation of (2.4), we can estimate the order of magnitude
of the associated error in the present experiment.

When uz /= 1 on the lateral boundary of V1, which we denote SL, additional terms on
the right-hand side of (2.4) are required (Limacher & Wood 2021). Denoting the sum of
these terms as CT,b, we have

CT,b = 2
π

∫
SD

a dS − 2
π

∫
SL

n · uuz dS. (6.2)

Notice that, when uz = 1 on SL, uz can be moved outside the second integral, and
conservation of mass yields ∫

SL

n · u dS =
∫

SD

a dS, (6.3)

by which CT,b = 0. In the present experiment, we can estimate the magnitude of CT,b
by replacing uz with the azimuthally averaged axial velocity at the outer edge of the
investigated domain, uze. That is,

CT,b ≈ 2
π

∫
SD

a dS − 2uze

π

∫
SL

n · u dS

≈ 2
π

(1 − uze)

∫ 2π

0

∫ Ro

Ri

ar dr dθ, (6.4)

where

uze = 1
2π

∫ 2π

0
uz(Ro, θ, 0) dθ. (6.5)

With uze > 1 for all tip speed ratios considered, the correction given by (6.4) is
negative, decreasing the thrust estimate when applied, and thus blockage cannot explain
the discrepancy between CT,2 and the measured thrust. Moreover, the correction is small,
amounting to approximately 5 % of the measured thrust curve for all tip speed ratios.
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Figure 12. Thrust curves showing the estimated effect of blockage on the impulse-based thrust calculation.
The correction CT,b comes from (6.4). Blockage does not account for the discrepancy between CT,2 and the
mean measured thrust curve.

The values of CT,2 and CT,2 + CT,b are plotted alongside the mean measured thrust curve
in figure 12.

The parameters CT,3 and CT,3 + CT,b are also plotted in figure 12. The negative
correction CT,b tends to improve the agreement between the calculated and measured
thrust at low tip speed ratios, but it exacerbates the disagreement at the highest tip speed
ratio, resulting in CT,3 + CT,b being 10 % below the measured thrust coefficient at the
highest tip speed ratio. In any case, this correction does not invalidate the conclusion that
the zero-strain-rate hypothesis is the most promising of those presented.

6.3. A physical explanation for the inaccuracy of CT,1

As tip speed ratio is increased from the power optimum to the runaway condition, thrust
is expected to increase as power decreases. Classical treatments cannot capture this trend,
because they inherently assume that all generated thrust does useful work. In the 1-D limit,
where a is constant over the swept disk of the rotor, it is assumed that CP = (1 − a)CT .
Noting the qualitative similarity between the plots of CP and CT,1 vs λ – figures 8 and 9,
respectively – one might conclude that a similar assumption is inherent to the derivation
of CT,1.

The explicit assumption leading to CT,1 is the alignment of mean vortex lines and
streamlines in the rotating frame of reference. This led, in Limacher & Wood (2021), to the
recovery of the Kutta–Joukowsky (KJ) equation for blade-element thrust. That equation is
itself based on an idealized flow configuration – it is typically derived for an isolated airfoil
in an unbounded flow – so it is not surprising that the assumptions leading to it preclude
the possibility of parasitic drag.

Although the error-amplification explanation offered in § 5.4 is plausible, the correlation
between CT,1(λ) and CP(λ) suggests that CT,1 fails for a physical reason. Since the
high-thrust regime is usually associated with a turbulent wake state, we may conclude
that turbulent diffusion creates a misalignment of mean vortex lines and streamlines,
invalidating both CT,1 and the KJ equation that can be derived from it.
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6.4. Application to BEM theory
Although CT,3 is able to predict thrust better than the classical expression from momentum
theory, it requires further simplification for implementation in BEM models. The full
equation for CT,3, given in (3.5), requires knowledge of ωz(r, θ, 0) and ur(r, θ, 0) on a
plane extending beyond the rotor radius, whereas BEM models depend only on uθ and a
on r ∈ [0, 1].

First, we can invoke the assumption that a = 0 for r > 1, allowing us to start from
(3.6). Second, our results suggest that we can likely neglect the ωz-term for most operating
conditions, although further investigation of its significance at lower tip speed ratios
(λ < 4) is warranted.

As for the contribution of u2
r , it may be related to that of a2. In Limacher & Wood (2021),

it was shown that, for a circumferentially uniform flow through an actuator disk
∫

SD

{u2
r − a2}dS = 0. (6.6)

This does not strictly hold for a rotor, and it was not satisfied in our results, but the
u2

r -contribution was small across the tip speed ratios considered, and an approximate
relationship to the a2-contribution could provide adequate accuracy for the purposes of
BEM.

In sum, the assumption of zero strain rates in trailing vortex cores, coupled with the
additional simplifications just noted, yield the following practical thrust equation:

CT =
∫

SD

{u2
θ + ka2 + 4a(1 − a)}dS, (6.7)

where k is a factor to be determined empirically or theoretically.
Since BEM models do predict peak power with acceptable accuracy, it is sensible to

retain the classical expression of CP = 4a(1 − a)2. In so doing, we avoid the assumption
that all generated thrust does useful work, with the squared-velocity terms in (6.7) serving
as estimates of the parasitic component of the rotor drag.

7. Conclusions

The present work contributes to a reconsideration of wind turbine theory through the
lens of vortical impulse theory. Contrary to momentum theory, impulse theory expresses
linear momentum conservation in terms of velocity and vorticity, rather than velocity
and pressure, and this removal of pressure facilitates direct treatment of the near wake.
The high-thrust regime that remains theoretically unexplained by momentum theory –
occurring between the power-optimal tip speed ratio and the runaway speed – is a specific
focus of this work.

Starting from a general impulse-based thrust expression for steadily rotating turbines in
an unbounded, incompressible flow, simplified expressions were derived by invoking three
distinct physical assumptions, which are: (i) the alignment of mean streamlines and vortex
lines in the rotor-fixed frame of reference; (ii) the insignificance of ∂ur/∂z in the immediate
vicinity of the rotor; and (iii) zero-strain rates in the cores of the trailing vortices.

From a theoretical perspective, the last proposition is the most intriguing, as its
corresponding thrust expression includes the familiar 4a(1 − a) integrand from classical
turbine theory, plus novel squared-velocity terms that permit a monotonic increase in thrust
across all induction factors, a ∈ [0, 1].
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Experimentally, the thrust expressions resulting from the three physical propositions
were tested using stereo-PIV data on a stream-normal plane just behind a rotor, operating
in a water channel. The acquired velocity fields were used as inputs to discretized versions
of the various impulse-derived thrust expressions, and the zero-strain-rate hypothesis
gave the best agreement with the directly measured thrust, yielding a worst-case error
of 5.7 % relative to the measured thrust, or 10 % after approximate blockage correction.
We thus have the satisfying result that the best-performing expression for experimental
thrust estimation is simultaneously the most theoretically appealing. These results offer
motivation for future experimental (or numerical) studies to investigate strain rates in the
near wake of rotors.

Possible sources of error were investigated to estimate their plausible significance, all
of which were deemed minor. Increased spatial resolution was shown to have minimal
effect on the force estimates, and insufficient resolution could not explain the discrepancies
between measured and calculated forces using the first two propositions. Tunnel blockage
was also considered, but its estimated significance, as determined from velocity data at
the edge of the investigated domain, is only about 5 % of the measured thrust. Nonlinear
contributions to the mean thrust due to rotor-speed variability have been argued to be
small (<5 %) by means of an order-of-magnitude analysis. However, one cannot dismiss
altogether the possibility of nonlinear contributions due to turbulence, and future work is
recommended to directly investigate their significance.

The failure of the thrust expressions derived from the first two physical propositions
was attributed to the invalidity of the propositions themselves. The first proposition,
regarding streamline and vortex line alignment, appears to imply that most of the generated
thrust does useful work. This assumption, which is also inherent to classical momentum
theory, is clearly invalid in the high-thrust regime considered herein. The second and third
propositions are mutually exclusive, and the experimental results suggest that proposition
(ii) should be discarded in favour of proposition (iii).

The thrust expression arising from proposition (iii) cannot be directly implemented
in BEM codes, because it depends on the radial velocity and axial vorticity. A brief
discussion is offered as to how this general thrust expression might be simplified,
recovering a useful thrust expression that, like existing BEM models, depends only on
circumferential and axial velocities in the vicinity of the rotor.
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