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The transient pressure field around a moderately thick airfoil is studied as it undergoes
ramp-type pitching motions at high Reynolds numbers and low Mach numbers. A unique
set of laboratory experiments were performed in a high-pressure wind tunnel to investigate
dynamic stall at chord Reynolds numbers in the range of 0.5 × 106 ≤ Rec ≤ 5.5 × 106

in the absence of compressibility effects. In addition to variations of mean angle and
amplitude, pitching manoeuvres at reduced frequencies in the range of 0.01 ≤ k ≤ 0.40
were studied by means of surface-pressure measurements. Independently of the parameter
variations, all test cases exhibit a nearly identical stall behaviour characterized by a gradual
trailing-edge stall, in which the dynamic stall vortex forms approximately at mid-chord.
The location of the pitching window with respect to the Reynolds-number-dependent static
stall angle is found to define the temporal development of the stall process. The time until
stall onset is characterized by a power law, where a small excess of the static stall angle
results in a drastically prolonged stall delay. The reduced frequency exhibits a decrease
in impact on the stall development in the case of angle-limited pitching manoeuvres.
Beyond a critical reduced frequency, both load magnitudes and vortex evolution become
reduced frequency independent and instead depend on the geometry of the motion and
the convective time scale, respectively. Overall, the characteristics of vortex evolution
induced by dynamic stall show remarkable similarities to the framework of optimal vortex
formation reported in Gharib et al. (J. Fluid Mech., vol. 360, 1998, pp. 121–140). The data
from this study are publicly available at https://doi.org/10.34770/b3vq-sw14.

Key words: boundary layer separation, flow–structure interactions

1. Introduction

Unsteady flow conditions occur in a variety of applications, such as helicopters, wind
turbines and biological locomotion. Here, the forces and moments on an airfoil are
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considered as its angle of attack is varied in time. For attached flows, the deviations
of aerodynamic loads due to dynamic changes in the angle of attack are small and the
magnitudes are comparable to those in static conditions (McCroskey & Pucci 1982). In
the attached, linear, part of the lift curve, the unsteady load fluctuations can be analytically
described and reasonably well predicted from theories by Theodorsen (1935) and von
Kármán & Sears (1938). As these theories are based on a flat plate subject to small
amplitude oscillations in potential flow, they become inaccurate once the flow separates.
Dynamic flow separation on an airfoil typically occurs at or above the static stall angle
of the airfoil, which depends on the Reynolds number of the flow, the airfoil shape,
turbulence levels and surface roughness, among other factors. When the static stall angle
is rapidly exceeded in unsteady pitching manoeuvres, flow separation can be delayed,
such that higher angles are required for stall. This can cause unsteady aerodynamic loads
to exceed static loads many times over. Such events may result in structural damage to
the machinery or loss of control in situations where stall is relied upon. For this reason,
considerable effort has been made since the 1970s to characterize the mechanisms and flow
behaviour of dynamic stall (Carta 1974; Carr, McAlister & McCroskey 1977; McAlister,
Carr & McCroskey 1978; McCroskey et al. 1982). The majority of these efforts have
been focused on the investigation of periodic oscillations of an airfoil (McCroskey 1982),
where the motion path is characterized by a pitching, heaving or translating motion, or any
combination thereof. Inherently, a periodic oscillation results in the overlapping of two
fundamentally different processes which occur within a single pitching period, namely
the separation and the subsequent reattachment of the boundary layer. Depending on the
kinematics and the time scales of the oscillation, these processes can be more or less
entangled and therefore become difficult to analyse.

For this reason, the aim of the present study is to investigate the effects of dynamic
flow separation separately from those of dynamic reattachment. To do so, well-prescribed
kinematics corresponding to ramp type motions are investigated. In order to better compare
the results from the individual pitching manoeuvres with those of continuous oscillations,
the paths of the ramp motions were of sinusoidal form. The time dependence of the angle
of attack and thus the pitching motion was defined by

α(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ᾱ − α̂, t < 0,

ᾱ + α̂ sin (2πft − π/2) , 0 ≤ t ≤ 1
2f

,

ᾱ + α̂, t >
1
2f

,

(1.1)

where ᾱ depicts the mean angle, α̂ is the mean-to-peak amplitude, f is the pitching
frequency in Hz and t is the dimensional time in s. The restricted domain was chosen
such that the pitching frequencies between ramps and continuous pitching are directly
comparable. As a result, the pitching motions begin at t = 0 and end at t = 0.5f −1 =
T/2. For the remainder of this study, the pitching motions are referred to as sinusoidal
half-cycles or ramps.

Apart from the geometric characteristics of the pitching motion, the remaining
parameters which govern the problem of unsteady pitching manoeuvres are the Reynolds
number Re, the Mach number Ma and the reduced frequency k. A distinguishing feature
of the present study is the wide parameter space covered, enabled by a unique highly
pressurized wind tunnel, in which the experiments were performed. This facility allowed
the investigation to be performed at high Reynolds numbers Rec = ρUc/μ, where c is the
airfoil chord, ρ is the fluid density, U is free-stream velocity and μ is the dynamic viscosity.
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Dynamic stall at high Reynolds numbers

Since the high Reynolds numbers are achieved by increasing the density, the velocities
can be kept low (<4.5 m s−1 for all test cases), enabling tests at very low Mach numbers
Ma = U/a ≤ 0.013, where a is the speed of sound. Compressibility effects, which have a
considerable impact on the dynamic stall process as elucidated by Carr (1988), can thus be
neglected. Furthermore, the low velocity implies that the time scales can be kept relatively
large, enabling highly dynamic events to be studied at high Reynolds numbers, something
that is extremely challenging in conventional facilities.

To allow for convenient comparisons with continuous oscillations, the unsteadiness
is expressed as the reduced frequency k, instead of the reduced pitch rate r, which is
commonly used for linear ramp profiles. The reduced frequency k = ωb/U is based on
the half-chord length b = c/2 as the convective length scale and the angular velocity
ω = 2πf . As such, there are two time scales that are relevant to the unsteady flow field:
the convective time scale of the flow, which non-dimensionalizes time as t∗ = tU/c,
and the time duration of the pitching motion, which non-dimensionalizes time as t̃ =
tω/2π. The ratio of these two non-dimensionalized times yields the reduced frequency
as t̃/t∗ = k/π.

In order to compare the results from this paper with other studies on ramp motions in
the literature characterized by a reduced pitch rate r = α̇c/U∞, a reduced pitch rate rlin
can be calculated by a linear approximation of the sinusoidal half-cycle. Accordingly, the
angular pitch rate is α̇ = 4α̂f . As a result, the linear reduced pitch rate can be related to
the reduced frequency given in the figures by rlin = 4kα̂/π.

Likely due to the focus on helicopter aerodynamics and the use of relatively thin airfoils
on helicopters, many early and highly influential studies on unsteady airfoil experiments
link the occurrence of dynamic stall inevitably to a vortex structure emerging from
the leading-edge region (Carr et al. 1977; McAlister et al. 1978; McCroskey 1982).
Comparable remarks can be found in more recent publications as well (Simão Ferreira
et al. 2009; Gupta & Ansell 2019). Similarly, the description of unsteady insect and bird
flight is generally associated with a leading-edge vortex (Dickinson, Lehmann & Sane
1999; Lentink 2013). It is important to note that these descriptions concern the dynamic
stall process at specific operating conditions, which cannot be generalized for arbitrary
wing shapes or Reynolds numbers.

Only a few previous studies, such as McCroskey et al. (1981) and Gracey, Niven &
Galbraith (1989), in which multiple airfoils were studied, note that the emergence of the
vortical structure is not necessarily bound to the leading edge, but may arise much further
aft on the airfoil. This appears to be particularly true for thicker airfoils, for which the
leading-edge region remains attached throughout the stall process, while the mid-chord to
trailing-edge region of the airfoil experiences highly disturbed and separated flow which
eventually rolls up into a vortical structure.

The isolated effect of airfoil thickness was investigated in a numerical study by Sharma
& Visbal (2019), who found that the transient aerodynamics differs considerably between
the tested airfoils at a Reynolds number of Rec = 200 000. The same authors noted that
with increasing airfoil thickness the mechanism of stall onset changes and the size of
the laminar separation bubble (LSB) decreases. The stall process on thinner airfoils is
triggered by the pressure-gradient-induced bursting of the LSB close to the leading edge,
whereas thicker airfoils display a gradual trailing-edge separation which moves upstream
up to the LSB. In the latter case, it was not certain whether the approaching separation
causes a collapse of the LSB or the separation itself triggers the onset of the stall. In a
numerical study by Benton & Visbal (2019) at a higher Reynolds number of Rec = 1.0 ×
106, the same mechanism of augmented trailing-edge separation was found to penetrate
the LSB, which initiated the vortex formation and the stall process. In comparison with
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Figure 1. The High Reynolds number Test Facility (HRTF) located at the Princeton Gas Dynamics laboratory.
(a) Connection to the external motor which drives the pump; (b) flow conditioning and subsequent contraction;
(c) access port and model location as shown in figure 2 highlighted in red.

previous studies, the authors concluded that the upstream progression of the trailing-edge
separation intensifies with Reynolds number.

Similarly to static stall behaviour, dynamic stall can be categorized into three types of
stall, namely leading-edge stall, trailing-edge stall and mixed stall according to McCroskey
et al. (1981), who tested six different airfoil geometries in a large parameter study.
Quasi-static behaviour was found not to be a reliable guide for dynamic performance,
as large differences between the different airfoil models were observed. Furthermore,
boundary layer separation characteristics were found to be additionally dependent on the
reduced frequency for some of the tested airfoils.

A characteristic, widely described feature of dynamic stall is delayed boundary layer
separation, which eventually forms a larger-scale vortical structure that can momentarily
increase lift before the airfoil ultimately stalls. In steady flows, the point of flow reversal
and the point of initial boundary layer separation are identical. The criterion for separation
was formulated by Prandtl as ∂u/∂y = 0 at y = 0. However, in unsteady boundary layers
flow reversal and separation generally do not coincide (Koromilas & Telionis 1980).
Instead, in the case of pitching airfoils a thin layer of reversed flow momentarily appears
at the bottom of the boundary layer prior to the probable but not necessary onset of
separation. This thin layer generally does not affect the outer extent of the boundary layer.
As a result, the inviscid flow field and thus the surface-pressure distribution remain largely
unaltered (Gracey et al. 1989).

2. Experimental set-up

The experiments were conducted in the High Reynolds number Test Facility (HRTF),
a closed-loop high-pressure wind tunnel located at the Gas Dynamics Laboratory at
Princeton University. The flow facility, which is shown in figure 1, uses dry air as a working
fluid, compressed to static pressures of up to p0 = 24 MPa (3500 psi or 238 bar). For all
test cases, density and viscosity were calculated from static pressure and temperature
measurements by employing the real-gas relationship ρ = p0/(zRT), where ρ is the
fluid density, R is the specific gas constant for air, T is the temperature and z is the
compressibility factor. The exact procedure is outlined in Zagarola (1996) and Miller et al.
(2018).

The flow is conditioned by a coarse-meshed grid, a honeycomb grid and a fine grid
before it passes through a 2.2 : 1 nozzle into the circular test section. Depending on the
Reynolds number, the flow conditioning yields turbulence intensity levels between 0.3 %
and 1.1 % (Jiménez, Hultmark & Smits 2010). Independently of the tunnel static pressure,

938 A10-4

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 P

ri
nc

et
on

 U
ni

v,
 o

n 
20

 A
pr

 2
02

2 
at

 1
7:

53
:2

9,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

70

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2022.70


Dynamic stall at high Reynolds numbers

(d )

(e)

(e)

(g)

( f )

(c)

(b)

(a)

Figure 2. Cutaway drawing of the airfoil assembly installed in an access port of the HRTF shown in figure 1.
The annotations show the following components: (a) support plate; (b) load cell; (c) rotary table with attached
stepper motor and encoder; (d) support rod; (e) endplates; ( f ) airfoil model; (g) test section. Flow goes from
left to right.

a free-stream velocity of up to 10 m s−1 can be attained in the test section, which measures
0.49 m in diameter and 4.88 m in length. The model is supported in an access port located
1.1 m downstream of the entrance to the test section. Further information on the facility
can be found in Jiménez et al. (2010), Miller et al. (2018) and Miller et al. (2019).

2.1. Airfoil model
A NACA0021 airfoil profile with a chord length of c = 0.17 m and an aspect ratio of AR =
1.5 was employed in the experiments. The thickness of 21 % was chosen to make the study
relevant to modern day wind turbines, where the thinnest part of the blade is commonly
of the order of 20 %. The relatively low aspect ratio was chosen due to a combination of
spatial constraints, Reynolds number and angular velocity requirements. To reduce end
effects, the model was equipped with elliptical endplates, as shown in figure 2. As detailed
in Brunner et al. (2021), the low aspect ratio delays stall to higher angles of attack in this
experimental set-up. Furthermore, Angulo & Ansell (2019) found that a decrease in aspect
ratio can lead to less severe dynamic stall.

A total of 33 brass pressure taps were press fitted into the model, of which 32 were
used for the tests. The assembly was sanded and polished by hand to a mirror-like finish,
with a normalized root-mean-square roughness height, κ , of 1.8 × 10−7 ≤ κ/c ≤ 5.3 ×
10−7. The airfoil assembly was attached to a rotary stage using a circular support rod. The
rotation axis was located at half-chord, which is different from many previous studies on
dynamic stall. A downstream shift in the rotation axis has been found to cause a delay of
dynamic stall to higher angles of attack (Helin & Walker 1985). The combined frontal-area
blockage of airfoil, endplates and support rod varies within 8 % ≤ B ≤ 15 % for angles of
attack in the range of 0◦ ≤ α ≤ 40◦. The airfoil surface was untripped to promote free
transition of the airfoil boundary layer. A thorough description of the set-up can be found
in Brunner et al. (2021).
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2.2. Instrumentation
The data presented in this paper were derived from surface-pressure measurements
acquired by 32 temperature-compensated differential pressure sensors (Honeywell Inc.,
model HSC). For comparison, forces and moments acting on the entire airfoil assembly
were simultaneously acquired by a six-degrees-of-freedom force-torque sensor (JR3 Inc.)
with a range of ±200 N and ±25 N m. Force sensor and integrated pressure data showed
excellent temporal agreement (see Appendix A.1), as well as nearly identical lift values.
The use of independent pressure sensors allowed for increased accuracy as the individual
sensor ranges could be chosen to match the anticipated pressures at their specific locations
on the airfoil. Three transducer sensing ranges were used: ±10 kPa for the highest
anticipated pressures in the leading-edge region, ±6.9 kPa for the intermediate range
and ±2.5 kPa for the smallest range. The pressure sensors, together with four 8-channel
multiplexers for sampling, were embedded in a circuit board, which was mounted inside
the airfoil model to ensure the shortest possible tube lengths between taps and sensors. A
Pitot-static probe served as the reference pressure and was installed 2.24 chord lengths
upstream of the airfoil. The free-stream velocity was measured by another Pitot-static
probe located 4.35 chord lengths upstream of the airfoil rotation axis. The Pitot-static
tube was connected to a Validyne DP-15 differential pressure transducer with a range of
±13.79 kPa.

The angle of attack change around the rotation axis at half-chord was executed by
a stepper motor connected to a rotary stage. The motion of the motor was hardware
controlled by an external waveform generator, triggered by the data acquisition program.
The angle of attack was monitored using a CUI AMT103 capacitive encoder attached to
the stepper motor drive shaft.

This motion control, as opposed to the use of a lever mechanism to produce the angle
variation, provided a high degree of freedom in the design of the waveform, so that not
only sinusoidal but any arbitrary oscillations could be generated (Kiefer et al. 2020). The
set-up, however, was limited by the torque provided by the stepper motor to overcome the
aerodynamic moment induced in a given test condition. This hardware limitation defined
the envelope of the parametric study.

2.3. Data acquisition and test procedure
For a given test run, standstill zero readings were acquired before and after the experiment
and their average was subtracted from the experimental data. In a second step, the airfoil
was pitched in a no-flow condition to capture possible acceleration effects on the sensor
readings due to the airfoil motion. The pressure sensors were not influenced by the motion
itself, whereas force sensor data showed deviations from the standstill zero readings due
to the inertia of the airfoil assembly. For every individual ramp motion, the flow field was
allowed to equilibrate at the initial angle of attack before data acquisition commenced. The
encoder and force sensor readings were carefully monitored to ensure there was no drift in
the airfoil motion.

In all test cases, 50 pressure distributions were recorded during every half-cycle. The
temporal bin averaging of the airfoil surface-pressure sensors showed no relevant loss
in detail compared with the continuously acquired signals from the force sensor. A
Savitzky–Golay filter, with a window size of �t∗ = 2.8, was applied to all pressure data,
from which lift, drag and moment data were then derived. The window size was carefully
chosen to remove electrical noise but to retain all aerodynamic features of the time series.
The data presented herein are the phase-averaged results of 150 individual half-cycles for
any given test case.
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Dynamic stall at high Reynolds numbers

The data were not corrected for blockage effects, aspect ratio, induction from the wake
or the presence of endplates. Hence, the angle of attack α is the geometric angle of attack.
Corrections were applied to static data from this set-up in Brunner et al. (2021), which
showed good agreement with data from previous literature.

3. Non-dimensionalization

A unique aspect of testing in a pressurized wind tunnel is that a test case, at a
specific Reynolds number and reduced frequency, can be obtained using a variety of
density–velocity combinations, even if the test model remains the same. Figure 3 shows
an example of this for the case at Rec = 3.0 × 106 and k = 0.1, where the data on the
left-hand side of the figure are given in dimensional form and the right-hand side shows
the non-dimensional lift Cl, drag Cd and moment coefficient Cm,c/4 for the same three data
sets, defined by

Cl = l
1
2
ρU2c

, Cd = d
1
2
ρU2c

, Cm,c/4 = mc/4

1
2
ρU2c2

. (3.1a–c)

Different combinations of velocity and density yield different dimensional forces
and moments (panels b–d) because forces and moments scale linearly with density
but quadratically with velocity (3.1a–c) for a given Reynolds number. The temporal
differences in the dimensional data sets are caused by the linear relationship of velocity
and dimensional pitching frequency in the reduced frequency. Panels (e–h) convincingly
show that both the magnitudes and the temporal developments collapse as a result of
non-dimensionalization, as expected. The light-grey areas in this and all following figures
highlight the period of airfoil motion. The variations from the phase-averaged means
by two standard deviations (2σ ) are indicated as shaded regions in panels (b–d) and
(f –h). The non-dimensionalized standard deviations differ slightly from each other and
are the smallest in the case of the highest velocity U∞ = 3.8 m s−1, and thus the highest
dimensional forces, which is expected as the instrumentation accuracy is increased at
higher loads. The data for this study were acquired at static tunnel pressures in the range
of 14.3 ≤ p0 ≤ 216.8 bar and free-stream velocities in the range 1.7 ≤ U∞ ≤ 4.5 m s−1.
The flow conditions for all test cases are given in table 1 in Appendix B.

4. Dynamic stall evolution

The temporal development of the suction-side pressure distribution of the baseline test
case previously presented in figure 3 is shown in figure 4. Here, Cp-levels are indicated
by black isolines in increments of �Cp = 0.25. Furthermore, vertical black solid lines
mark start and end of the pitching manoeuvre and the black dashed line indicates the
passing of the static stall angle. The origin t = 0, and therefore also t∗ = 0, is defined as
the beginning of the motion. During the pitching manoeuvre, the contour lines indicate a
growing suction peak near the leading edge and a suction hump at half-chord and t∗ ≈ 19,
which likely indicates the presence of a dynamic stall vortex (DSV) that causes peaks in the
drag and moment histories (cf. figure 3). After the DSV has been convected downstream, a
diminished suction peak remains at the leading edge, whereas the remainder of the airfoil
suction side experiences a nearly constant pressure indicating a fully separated boundary
layer downstream of x/c > 0.15.

Since specific Cp-values have only a limited significance in transient manoeuvres, the
plot is additionally coloured to illustrate the temporal change of the pressure distribution
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Figure 3. Lift, drag and pitching moment in dimensional form (left column) and non-dimensional form
(right-hand column) for a pitch-up manoeuvre characterized by ᾱ = 24◦, α̂ = 5◦ and k = 0.1 at a Reynolds
number of Rec = 3.0 × 106. Data sets were taken at different static pressures and velocities as specified in the
legend.

∂Cp/∂t∗, which results in a distinct picture of the pressure variations across the airfoil
suction side. Here, blue colours reveal an increase in suction and red colours a loss of
suction over time.

During the first half of the pitching motion, suction builds up across the entirety of
the airfoil suction side with the strongest increase concentrated near the leading edge.
With the passage of the static stall angle a region of suction loss (red) begins to develop
at about half-chord and progresses toward the leading edge during the remainder of the
pitching motion. During the same time, the trailing-edge region experiences a gradual
increase in suction (blue) which advances forward up to x/c ≈ 0.2. Thus, all temporal
pressure variations up until the formation of the DSV progress forward toward the leading
edge, suggesting a stall type characterized by a gradual trailing-edge stall. Based on
comparisons with other dynamic stall descriptions, such as Sharma & Visbal (2019), the
suction increase near the trailing edge may stem from a roll-up of the separated shear layer.
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Figure 4. Temporal development of the suction-side pressure distribution for the test case shown in figure 3:
k = 0.1, ᾱ = 24◦, α̂ = 5◦, Rec = 3.0 × 106 and Ma∞ = 0.007. The time span of 0 ≤ t∗ ≤ 15.7 indicates when
the airfoil is in motion. Isolines indicate constant Cp-levels with values provided on the left-hand side of the
plot.

The origin of the DSV appears to be located approximately at mid-chord, similar to
findings reported in Mulleners & Raffel (2012), Gupta & Ansell (2019) and Sharma &
Visbal (2019). Benton & Visbal (2019) describe the formation of the main DSV as the
merging of two preceding vortices; a compact leading-edge vortex and a large, diffuse
shear layer vortex. From the surface pressure data alone, it is not clear whether the same
mechanisms dominate the stall process in the present experiments or only a single DSV
develops. Following rapid convection of the DSV, brief surges of suction appear at the
trailing edge (TE) and subsequently at the leading edge (LE). The surges imply alternating
vortex shedding from TE and LE, where the LE vortex appears to convect downstream
above the separated shear layer, as only minimal pressure traces of the vortex are visible
in the region of separated flow downstream of x/c ≈ 0.15.

The characteristic picture of a growing region of suction increase (blue triangle shape)
originating from the TE and enclosed by regions of suction loss in figure 4 is similarly
prevalent throughout the vast majority of test cases presented herein. Thus, it is concluded
that all test cases exhibit a nearly identical TE stall behaviour with minor differences
induced by the variation of the four isolated test parameters. Relevant differences and
similarities are elucidated in the following and are highlighted by the suction-side pressure
variations of selected test cases shown in figure 5.
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Figure 5. The temporal change of suction-side surface pressure presented for selected test cases (in bold
numbers; see table 1 in Appendix B) of the Reynolds number (a–c), the mean angle (d–f ), amplitude (g–i)
and reduced frequency series (j–l), respectively. Blue colours illustrate an increase in suction over time; red
colours indicate a loss of suction. Black solid lines mark the start and end of the pitching motion; black dotted
lines specify the passage of the static stall angle. Grey dotted horizontal lines mark the location of pressure
taps.

4.1. Reynolds number
Figure 5(a,b,c) shows three test cases of the Reynolds number variation at Rec = 0.5 × 106

(figure 5a), Rec = 2.0 × 106 (figure 5b) and Rec = 5.0 × 106 (figure 5c). In all three test
cases the mean angle, the amplitude and the reduced frequency are identical (ᾱ = 24◦, α̂ =
5◦, k = 0.1). An increase of the angle of attack generally causes LSBs to progress forward
toward the LE while contracting in length (Tani 1964). This mechanism can be observed
during the ramp-up manoeuvre of the two lower-Reynolds-number cases (figure 5a,b)
where the presence of LSBs is revealed by momentary losses of suction ∂Cp/∂t∗ when the
LSBs pass over discrete pressure tap locations between 0.05 < x/c < 0.13, as indicated
in the figure. Similar signatures of LSBs were found up to Rec = 2.5 × 106, whereas at
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Dynamic stall at high Reynolds numbers

higher Reynolds numbers, no signature of LSBs is evident. LSBs have been experimentally
observed in Tani (1964) up to Reynolds numbers of the order of Re = 107. However, in
the current study, LSBs are not expected to be present at the highest Reynolds numbers
because figure 5(a,b) indicates that the laminar separation point is located around x/c =
0.1. At Rec = 5.0 × 106, the local Reynolds number at this location is Rex = 5 × 105. As
such, the boundary layer is expected to transition to turbulence upstream of the laminar
separation point.

The size of LSBs was found to decrease with increasing airfoil thickness (Tani 1964;
Sharma & Visbal 2019) and also with increasing Reynolds number (Benton & Visbal
2019). Furthermore, the interaction of TE separation with the LSB was believed to trigger
the stall process at Rec = 5 × 105 at an airfoil thickness of 18 % and similarly at a
higher Reynolds number of Rec = 1.0 × 106 and 12 % thickness. However, in the current
study, the surface-pressure measurements do not indicate a fundamental change in stall
development due to a variation of the Reynolds number, or size or existence of LSBs
despite the shift of the stall evolution to later times, which is further described in § 6.

4.2. Mean angle and amplitude
Figure 5(d–f ) clearly demonstrates how the duration of the temporal pressure variations
decreases with increasing mean angle ᾱ. Both the suction loss near mid-chord as well as
the advancing TE separation develop distinctly slower at lower angles of attack. How this
affects the time of stall onset is further elaborated in § 7.

In test cases with higher amplitudes alternating vortex shedding becomes increasingly
prevalent (figure 5i). Thus, the unsteadiness of the flow field dramatically increases at high
angles of attack as described in § 9.

5. Effects of reduced frequency

The parameter with the strongest association with dynamic stall is undoubtedly the reduced
frequency k, which is commonly used to characterize the degree of unsteadiness of the
pitching manoeuvre with respect to the free-stream flow (see § 9). To investigate the
effects of reduced frequency on the stall process, k was varied in the range of 0.01 ≤ k ≤
0.40, with all other parameters held constant at ᾱ = 24◦, α̂ = 5◦ and Rec = 3.0 × 106.
Consequently, the initial pre-stall as well as the final post-stall values of lift, drag and
moment are identical in all test cases. The static stall angle at this Reynolds number is
αss = 24◦ (cf. Brunner et al. 2021).

Figure 6 shows the temporal development of the loads plotted against the pitch-based
non-dimensional time t̃ in panels (a–d) and against the convection-based non-dimensional
time t∗ − t∗ss − t∗0 in (e–h), where t∗ss is the duration from the beginning of the motion until
the passing of the static stall angle and t∗0 is an offset discussed below. In the pitch-based
time scale, the instantaneous angle of attack α is identical in all test cases for a given value
of t̃ (see figure 6a). Note that the pitching manoeuvres differ significantly in duration with
respect to the convective time scale as seen in figure 6(e). However, even at the highest
reduced frequency, the free-stream flow still convects 3.9 chord lengths during the pitching
manoeuvre.

5.1. Early-time dynamics
In figure 6 it is evident that different segments of the time series are governed by different
characteristic time scales. In the beginning of the pitching manoeuvre at 0 ≤ t̃ � 0.3,
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Figure 6. Variation of the reduced frequency in the range of 0.01 ≤ k ≤ 0.40 scaled with the pitch-related time
t̃ in (a–d) and with the convective time t∗ − t∗ss − t∗0 in (e–h), where t∗ss is the duration from the beginning of the
motion until the passing of the static stall angle and t∗0 is an offset discussed in § 5. The pitching manoeuvres
are characterized by ᾱ = 24◦, α̂ = 5◦, Rec = 3.0 × 106 and Ma∞ ≤ 0.013.

the pitch-related time scale best characterizes the flow. This is especially clear in the lift
coefficient (figure 6b).

During the pitching motion, two counteracting mechanisms are responsible for the
temporal development of the loads, namely the increase in suction magnitude near the LE
and the simultaneous boundary layer separation progressing upstream from the TE. The
LE suction peak adapts almost instantly to a change in angle of attack and is responsible
for the majority of the lift production, which is why the lift values are initially nearly
identical in all test cases. Higher reduced frequencies result in slightly lower suction peak
magnitudes due to lower local flow velocities with respect to the moving airfoil surface.

Due to delayed boundary layer separation with respect to the angle of attack (figure 5j–l),
the lift production in the mid-section of the airfoil is stronger in high reduced frequency
cases as shown in figure 7, where instantaneous pressure distributions of dynamic test
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Figure 7. (a) Instantaneous pressure distributions for static and dynamic test cases at α = 23◦ (t̃ = 0.22). (b)
Relative comparison between the suction side pressure distributions of static and dynamic test cases shown in
(a).

cases are compared with their static counterpart at an angle of attack of α = 23◦ (t̃ =
0.22). Conversely, low reduced frequency cases experience an earlier suction loss in the
mid-section of the airfoil due to an earlier onset of separation with respect to the angle
of attack. Higher suction in the mid-section of the airfoil combined with lower suction
peak magnitudes at the LE result in stronger negative pitching moments in high reduced
frequency cases during the pitching motion at times 0 ≤ t̃ � 0.3 (compare figures 6d and
7). Similarly, the higher suction around mid-chord is responsible for higher drag values at
high reduced frequencies.

5.2. Later-time dynamics
Past the initial stall development, in which attached flow dominates, the stall process
enters the vortex evolution stage. Figure 6(e–h) reveals, perhaps surprisingly, that this
stage of the stall process scales solely with the convective time scale of the flow and is thus
independent of the reduced frequency, at least for the higher reduced frequencies. As such,
it appears as if the onset of boundary layer separation is governed by the pitching motion,
but the subsequent vortex evolution is entirely governed by convection, much like a frozen
field hypothesis, and thus solely dependent on the convective nature of the mean flow. This
becomes especially evident when comparing panels (j–l) in figure 5, in which the duration
of the temporal pressure changes appear nearly identical despite vastly different reduced
frequencies.

In figure 6(e–h), the terms t∗ss and t∗0 are subtracted from the non-dimensional time t∗.
The offset t∗0 describes the duration between the passing of the static stall angle and the
moment when the convective time scale takes over. It was found that this offset is t̃0 =
0.05, or equivalently t∗0 = π/(20k). The time point t∗ss + t∗0 serves as the cross-over time
from the early to the later scaling behaviour of the flow. As such, it serves as a virtual
origin for the later time scales.

As seen in figure 6, a critical reduced frequency exists at around k ≈ 0.05 below
which the time series depart considerably from the trend of the remaining test cases. We
hypothesize that this threshold is determined by the time it takes for the LE suction peak to
collapse. For k > 0.05, the suction peak persists until the end of the pitching motion. For
lower reduced frequencies, the suction peak collapses beforehand. However, it is important
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to point out that even for the lowest reduced frequencies tested herein, the flow shows
significant unsteady effects and cannot be represented by the quasi-steady solution.

From the above observations, it can be noted that if the reduced frequency is greater than
the critical reduced frequency, the stall delay time t∗d , i.e. the time between the passing of
the static stall angle and the initiation of lift stall (approximately simultaneous with Cd,max)
depends on the reduced frequency in the following form:

t∗d = A/k + f (β), k ≥ kcrit. (5.1)

The term A/k = t∗0 represents the duration between the static stall angle and the time at
which the stall process becomes invariant of the reduced frequency. In this study A =
π/20, but it is possible that it depends on the geometry of the set-up, i.e. airfoil thickness,
airfoil camber and blockage. The function f (β) describes the reduced-frequency-invariant
period of the stall development (t∗ − t∗ss − t∗0 > 0 in figure 6e–h), which depends on the
geometry of the pitching motion, characterized by the parameter β, as elucidated in §§ 6
and 7. For the test cases presented in figure 6 f (β) is constant.

The present results support findings from Galbraith, Niven & Seto (1986), who reported
that the dynamic stall process is principally free stream dependent after its initiation. The
same authors remark that the consensus in literature about this phenomenon is mixed.
Data in that study were obtained at Rec = 1.5 × 106 for two airfoil geometries. Deparday
& Mulleners (2019) also showed that the primary instability stage depends on the reduced
frequency, whereas the stall development stage is independent of k.

5.3. Loads and concept of limited pitching manoeuvres
Remarkably, the load peaks in figure 6 attain an upper limit for reduced frequencies
greater than k ≈ 0.1. Beyond this threshold, maximum drag and moment remain constant,
whereas the maximum lift increases minimally. This occurs when the LE suction peak
persists until the end of the pitching manoeuvre instead of collapsing earlier. Consequently,
the further growth of the suction peak is limited by the geometry of the pitching
manoeuvre, which manifests itself in an upper load limit. More specifically, the loads
depend on the angle of attack at which the suction peak collapses as described in § 9.

6. Significance of the static stall angle

6.1. Mean angle variation at constant Reynolds number
To investigate the effect of geometric modifications on the stall process, the mean angle of
the pitching motion was varied in the range 19 ◦ ≤ ᾱ ≤ 26◦, while the amplitude, α̂ = 5◦,
the reduced frequency, k = 0.1, and the Reynolds number, Rec = 3.0 × 106, were all held
constant.

Figure 8(b–d) indicates that all test cases except for ᾱ = 19◦ experience stall within a
time frame of �t∗ ≤ 40 from the start of the pitching manoeuvre. The magnitudes of the
load peaks are strongly dependent on how far above the static stall angle αss = 24◦ the
motion stops, where larger final angles attain higher loads. Conversely, the delay until the
onset of stall is longer for smaller final angles close to the static stall angle. In panels
(c,d) it is evident that the vortex-induced load surges develop more slowly for smaller final
angles of the pitching motion.
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ᾱ = 24°
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Figure 8. (a–d) Variation of the mean angle at Rec = 3.0 × 106. (e–h) Variation of the Reynolds number for a
pitching motion characterized by ᾱ = 24◦. Panels (a,e) show the characteristic motion profiles α(t∗) together
with the static stall angles αss(Re), which are illustrated as horizontal lines. In all test cases the amplitude is
α̂ = 5◦ and the reduced frequency is k = 0.1.

6.2. Reynolds-number variation at constant mean angle
The pitching motions in figure 8(e–h) are characterized by ᾱ = 24◦, α̂ = 5◦ and k = 0.1.
As shown in the legend, the chord Reynolds number was increased tenfold in the range of
0.5 × 106 ≤ Rec ≤ 5.5 × 106 at Mach numbers Ma∞ ≤ 0.012.

Despite an identical angle of attack of α = 19◦, all load coefficients exhibit a
dependency on the Reynolds number at times t∗ ≤ 0, as discussed in Brunner et al. (2021).
During the pitching motion, a modest difference in moment development can be observed,
implying augmented boundary layer separation in low-Reynolds-number cases. In these
cases, the advanced separation with respect to the angle of attack leads to an earlier
initiation of stall, after which the remaining temporal development of the stall process
is mainly dependent on the free-stream velocity.

As discussed in § 4, the stall process for all tested Reynolds numbers occurs gradually
from the TE and appears not to be triggered by a bursting of the LSB.
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Figure 9. (a) Time between when the convective time scale takes over and the instance of maximum drag
plotted against the relative angular difference β between the angle at which the LE suction peak collapses and
the static stall angle. (b) The maximum drag coefficient plotted against the angle at which the LE suction peak
collapses: α|Cp,min . Marker colours are consistent with the colours found in the legends of the preceding figures.
Both plots show all test cases listed in table 1.

6.3. Coherence between the test cases
Figure 8(a,e) illustrates the progression of the angle of attack over time as characteristic
ramp-up profiles and the Reynolds-number-dependent static stall angles αss(Re) as
horizontal lines. While the motion profiles in the mean angle series (figure 8a–d)
incrementally exceed the constant static stall angle at αss = 24◦, the motion profile in
the Reynolds-number series (figure 8e–h) is geometrically constant, but instead the static
stall angles increase with Reynolds number (αss(Re)) (see Brunner et al. 2021).

By considering the angular distance between the static stall angle and the angle at which
the LE suction peak collapses, �α = α|Cpmin − αss, it can be observed that test cases
with smaller values of β = �α/αss attain a prolonged delay until the initiation of stall.
The parameter β is a function of Reynolds number and of kinematic features of the pitch
motion.

7. Stall delay

Figure 9(a) shows the non-dimensional time between when the convective time scale takes
over and the instance of maximum drag as a function of β for all test cases listed in table 1.
The results suggest that the stall delay is characterized by

t∗d = t∗0 + C βγ , (7.1)

where t∗0 = π/(20k), C = 4 and γ = −0.5. The generally applicable equation (7.1) is
shown by a dashed line in figure 9(a) and was established by combining the stall delay
relationships found in sections §§ 5 and 6. The instance of maximum drag is induced by
maximum suction of the DSV and coincides approximately with the time of lift stall.

It can be observed that a smaller value of β significantly increases the non-dimensional
time until the onset of stall. More specifically, inspection of the pressure distributions
reveals that both the initial boundary layer separation as well as the time for vortex
formation are prolonged. However, β is presumably only an indirect measure for stall
delay, which characterizes the ratio of LE flow velocity to free-stream velocity. This flow
velocity ratio could be regarded as the non-dimensional feeding velocity to the vortex.
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Dynamic stall at high Reynolds numbers

The static stall angle appears to play a significant role even in the event of unsteady
pitching manoeuvres. Particularly at high Reynolds numbers, the static stall angle is clearly
defined, as only minimal TE separation occurs before the sudden static stall (cf. Pires et al.
2016; Brunner et al. 2021). This can also explain why the two lowest-Reynolds-number test
cases do not fall on the otherwise convincing trend in figure 9, as the static stall process
is smeared out over a range of angles due to a gradual TE separation. The test case with
the lowest reduced frequency, k = 0.01, clearly diverges from the power law, which can be
explained by an inadequate sampling rate, as it was kept a constant in t̃ units.

Moreover, it can be observed in figure 9(b), that the vortex-induced loads, here
approximated by Cd,max, are strongly dependent on the angle at which the LE suction
peak collapses.

8. Optimal vortex formation

The characteristics of reduced frequency independence paired with identical load histories
in magnitude and reduced time (§ 5) appear strikingly similar to the framework of
optimal vortex formation reported in Gharib, Rambod & Shariff (1998) and Dabiri
(2009). Originally, Gharib et al. (1998) showed that vortex rings generally develop
within a non-dimensional formation time (in t∗ units) of 3.6–4.5 across a broad range
of investigated flow conditions. Furthermore, the vortex strength of the primary vortex
was found to attain an asymptotic maximum independent of the piston velocity. The
non-dimensional vortex formation time is equally prevalent in DSV formation as the
duration of the moment peak development caused by vortex formation is of the order of
�t∗ ≈ 4. Dabiri (2009) reports that stronger vortices develop quicker in vortex formation
time, which is consistent with the results shown in figure 9.

The reduced frequency threshold presented in § 5 can be regarded as the lowest reduced
frequency at which the maximum vortex strength is achieved. Lower reduced frequencies
attain smaller vortex-induced loads, whereas the higher energy input for k > 0.1 cannot be
utilized to increase the strength of the DSV. Furthermore, § 6 and figure 9(b) indicate that
higher loads can be realized at higher amplitudes. The time until stall, which is equivalent
to the time of maximum vortex strength, is significantly shortened at higher values of
β as shown in figure 9(a). Consequently, larger amplitudes can result in greater vortex
strength paired with shorter stall delays, which in return allows operation at higher reduced
frequencies.

9. Measure of unsteadiness

A common categorization of the unsteadiness of the flow, based on the reduced frequency,
can be found in Leishman (2016). The pitching motion or flow field is considered to
be quasi-steady below k ≤ 0.05, unsteady for 0.05 < k ≤ 0.2 and highly unsteady for
k > 0.2. In unrestricted pitching motions, in which stall occurs before the maximum
angle is reached, the reduced frequency serves as a means to attain higher angles of
attack before the onset of stall, where increased load magnitudes and fluctuations emerge.
Section 5 demonstrates that the reduced frequency loses its impact if the pitching motion
is geometrically limited by a maximum angle of attack. In the case of restricted pitching
motions, the reduced frequency does not contribute to an increasing unsteadiness of the
flow field, as seen in figure 6 where loads and time delay reach asymptotic limits.

To capture the influence of periodic sinusoidal airfoil motions on the onset of stall,
Mulleners & Raffel (2012) introduced the instantaneous effective unsteadiness α̇∗ as a
single representative parameter which combines geometric and temporal characteristics
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of the dynamic stall problem. It is defined as α̇∗ = α̇ssc/U, where α̇ss is the angular
velocity of the pitching manoeuvre at the static stall angle. This parameter has been
shown to describe the dynamic stall behaviour in various studies (Mulleners & Raffel
2012; Kissing et al. 2020; Le Fouest, Deparday & Mulleners 2021). However, due to the
symmetry of the sine function about its mean value, the magnitude of the instantaneous
effective unsteadiness is identical for test cases at mean angles equidistant to the static stall
angle. Thus, test points like ᾱ = 22◦ and ᾱ = 26◦ attain the same instantaneous effective
unsteadiness, but yield vastly different times until stall onset and considerably different
peak load magnitudes (cf. figure 8a–d). As such, the kinematics of the motion appear to
play a significant role in determining the unsteadiness, which cannot be captured by the
angular velocity at the static stall angle alone. Unsteadiness and the effect of higher-order
terms warrant further investigation.

The present results suggest that the unsteadiness of the flow field is first and foremost
dependent on the angle of attack at which the LE suction peak collapses. At sufficiently
high pitch rates, a high angle of attack can be attained before stall is initiated, which
leads to considerably higher vortex suction in the pressure distributions. Generally, the
maximum drag value appears to be a suitable albeit indirect indicator for vortex strength,
which can be examined in figure 6(c), where the drag peak at high reduced frequencies
develops long past the end of the pitching motion. Figure 9(b) indicates that the maximum
drag value increases nearly linearly with the angle at which the LE suction peak collapses.
The present results in figure 5(g–i) as well as data from the Glasgow database (Green
& Giuni 2017) show that load fluctuations caused by alternating vortex shedding after
the convection of the main DSV are more frequent and distinct at higher angles of
attack, implying increased unsteadiness of the flow field. The time until stall is drastically
shortened when high angles are attained, as shown in figure 9(a).

10. Conclusions

The transient pressure field around a moderately thick airfoil was experimentally
investigated as it was undergoing ramp-type pitching motions at high Reynolds numbers.
In a parametric study, the influence of mean angle, angle amplitude, Reynolds number
and reduced frequency on the dynamic stall process were investigated. Independently
of the parameter variations, all test cases exhibited a nearly identical stall behaviour
characterized by a gradual TE stall, in which the DSV formed approximately at mid-chord,
whereas the LE displayed continually attached flow throughout the entirety of the stall
event.

Testing in a variable density flow facility enabled the decoupling of Reynolds number
and Mach number effects, and thus allowed for an investigation of the isolated influence of
the Reynolds number on the dynamic stall process, in addition to the investigation of the
pitching motion. The Reynolds number was increased tenfold between 0.5 × 106 ≤ Rec ≤
5.5 × 106, at Mach numbers of Ma∞ ≤ 0.013, well within the incompressible range.

It was found that the location of the pitching window with respect to the
Reynolds-number-dependent static stall angle plays a crucial role in the temporal
development of the stall process. The delay until stall onset was found to be characterized
by a power law, where a small excess of the static stall angle resulted in a drastically
prolonged delay until the initiation of stall. Furthermore, the results indicate that
vortex-induced loads scale linearly with the angle of attack at which the LE suction peak
collapses.

The reduced frequency, a historically defining parameter for the unsteadiness, was
increased 40-fold and exhibited a decrease in impact on the stall development in the

938 A10-18

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 P

ri
nc

et
on

 U
ni

v,
 o

n 
20

 A
pr

 2
02

2 
at

 1
7:

53
:2

9,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

70

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2022.70
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case of angle-limited pitching manoeuvres. If the pitching manoeuvre is restricted by a
maximum angle, a critical reduced frequency exists beyond which the load magnitudes
and the vortex evolution become independent of the reduced frequency. Instead, the load
magnitudes depend on the maximum angle of attack, and vortex evolution is governed by
the free-stream velocity. Thus, initial vortex formation, growth and subsequent convection
become independent of the reduced frequency for k > kcrit and instead dependent solely
on the mean flow.

Overall, the characteristics of vortex evolution induced by dynamic stall showed
remarkable similarities to the framework of optimal vortex formation reported in Gharib
et al. (1998) and Dabiri (2009).

In agreement with the Glasgow database (Green & Giuni 2017), the present results
suggest that the unsteadiness of the flow field is primarily dependent on the angle of
attack at which the LE suction peak collapses. A high angle of attack results in a higher
unsteadiness of the flow field, indicated by increased vortex-induced loads, as well as
stronger and more frequent vortex shedding after the convection of the primary DSV.
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Appendix A

A.1. Experimental constraints
Even though the airfoil was equipped with endplates to mitigate end effects arising from
pressure equalization, they are not able to fully suppress flow around the tips of the
airfoil. The presence and rotation direction of tip vortices presumably leads to a spanwise
contraction of streamlines on the suction side, decelerated flow on the pressure side of
the airfoil and additional downwash in the near wake. McAlister et al. (1978) conducted a
series of experiments on a NACA0012 with an aspect ratio of AR = 1.5, where deviations
were found at low reduced frequencies between test cases with and without endplates.
With endplates, even the lowest reduced frequency test case of k = 0.004 was found not
to satisfy quasi-steady behaviour. In tests without endplates, k = 0.004 appeared to be the
dividing case between quasi-steady and unsteady flow behaviour.
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Geometric blockage and wake blockage assuredly contribute to higher flow velocities
over the airfoil compared with a wing in free air and induce a lower effective angle of
attack due to artificial bending of streamlines. The combination of the above is likely the
reason for the rather high stall angles observed in the tests.

The three-dimensionality of the dynamic stall flow field can be approximately quantified
by comparing the simultaneous recordings from the two-dimensional surface-pressure
measurements with the integrated loads from the force balance. For this, the points in
time at which maximum drag occurred were compared between the surface pressure and
the load cell measurements: �t∗2D−3D = t∗Cdmax,SP − t∗Cdmax,LC. Across all test cases, a
nearly constant delay of Cd,max was found in the load cell measurements: �t∗2D−3D =
−0.89 ± σ2D3D, where σ2D3D = 0.64 represents one standard deviation from the mean.
Since this delay is relatively small (≈1/10) in comparison with the overall development
time of the stall process, the unsteady flow field is regarded as nearly uniform across
a greater portion of the span. The increasing delay in flow field development towards
the airfoil tips is consistent with findings in Galbraith, Coton & Jiang (1995), in which
surface-pressure measurements were performed at multiple spanwise locations.

Appendix B

p0 ρ U∞ fp Rec × 106 Ma∞ αss ᾱ α̂ k
Run (bar) (kg m−3) (m s−1) (Hz) (−) (−) (deg.) (deg.) (deg.) (−) series

1 14.3 16.7 3.34 0.66 0.5 0.01 22.4 24 5 0.1 Rec
2 24.3 28.4 3.94 0.76 1 0.011 22.5 24 5 0.1 Rec
3 39 45.7 3.7 0.71 1.5 0.011 22 24 5 0.1 Rec
4 52.9 61.9 3.67 0.7 2 0.011 22.8 24 5 0.1 Rec
5 85.4 99.7 2.95 0.56 2.5 0.009 23.4 24 5 0.1 Rec
6 73.9 87.9 3.93 0.75 3 0.011 24 24 5 0.1 Rec
7 87.3 102.1 4.02 0.76 3.5 0.012 24.6 24 5 0.1 Rec
8 195.7 220.5 2.5 0.47 4 0.007 25.2 24 5 0.1 Rec
9 197.5 222.4 2.79 0.53 4.5 0.008 25.6 24 5 0.1 Rec
10 199.1 224.4 3.08 0.58 5 0.009 26 24 5 0.1 Rec
11 221.2 238.5 3.31 0.62 5.5 0.009 26.2 24 5 0.1 Rec
12 125.8 148.2 2.51 0.47 3 0.007 24 19 5 0.1 ᾱ

13 167 196 2 0.38 3 0.006 24 20 5 0.1 ᾱ

14 135.3 159 2.37 0.45 3 0.007 24 21 5 0.1 ᾱ

15 166.3 194.9 2.01 0.38 3 0.006 24 22 5 0.1 ᾱ

16 134.8 158.2 2.37 0.45 3 0.007 24 23 5 0.1 ᾱ

17 136.9 161.2 2.34 0.44 3 0.007 24 24 5 0.1 ᾱ

18 127 150 2.47 0.47 3 0.007 24 25 5 0.1 ᾱ

19 148.5 174.5 2.19 0.41 3 0.006 24 26 5 0.1 ᾱ

20 125 147.1 2.51 0.48 3 0.007 24 24 4 0.1 α̂

21 136.9 161.2 2.34 0.44 3 0.007 24 24 5 0.1 α̂

22 174.7 201.9 1.98 0.37 3 0.006 24 24 6 0.1 α̂

23 175.3 202.8 1.97 0.37 3 0.006 24 24 8 0.1 α̂

24 175.9 203.7 1.97 0.37 3 0.006 24 24 10 0.1 α̂

25 176.5 204.6 1.94 0.37 3 0.006 24 24 12 0.1 α̂

26 216.8 244.4 1.73 0.33 3 0.005 24 24 14 0.1 α̂

Table 1. For caption see next page.
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p0 ρ U∞ fp Rec × 106 Ma∞ αss ᾱ α̂ k
Run (bar) (kg m−3) (m s−1) (Hz) (−) (−) (deg.) (deg.) (deg.) (−) series

27 218.7 245.9 1.73 0.33 3 0.005 24 24 16 0.1 α̂

28 76.1 88.4 3.95 0.08 3 0.011 24 24 5 0.01 k
29 84.1 97.5 3.64 0.14 3 0.01 24 24 5 0.02 k
30 84.8 98.7 3.59 0.2 3 0.01 24 24 5 0.03 k
31 63.5 75.3 4.55 0.43 3 0.013 24 24 5 0.05 k
32 101.5 117.3 3.08 0.41 3 0.009 24 24 5 0.07 k
33 128.8 152.6 2.44 0.47 3 0.007 24 24 5 0.1 k
34 183.1 211.8 1.91 0.55 3 0.006 24 24 5 0.15 k
35 185 214.1 1.9 0.73 3 0.005 24 24 5 0.2 k
36 185.6 214.9 1.88 0.91 3 0.005 24 24 5 0.25 k
37 209.6 235.6 1.79 1.02 3 0.005 24 24 5 0.3 k
38 210.7 236.6 1.79 1.18 3 0.005 24 24 5 0.35 k
39 212 237.7 1.79 1.35 3 0.005 24 24 5 0.4 k

Table 1. Operating conditions of all test cases shown in previous plots.
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